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ABSTRACT
Car physics models are often complicated and require a large
effort for understanding them. Additionally, some seem to
be incomplete and many open questions remain. In this
paper a novel 2D car physics model is presented. The model
is based on Ackermann steering and presents closed formulas
for forces causing rotation and acceleration of the car and
tyres. As a simplification, the model assumes only two tyres
instead of four. The paper describes how the equations are
derived and how the model can be solved in a game loop.
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General Terms
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1. INTRODUCTION
Car racing games rely on realistic car physics models for sim-
ulating the movement and traction of cars and tyres. Such a
model may represent a car on a flat surface, as done in this
work, or it may include the possibility of uneven ground
and car jumps. Professional game studios put a large ef-
fort into developing proprietary car physics models for their
products, which are of course not accessible for the pub-
lic. People wishing to develop their own games thus have
to rely on publicly available sources, which often are either
over-sophisticated or leave open questions.

Alternatively, it is possible to use existing physics engines,
for example general physics engines that allow to simulate
rigid bodies and spring-mass systems, like ODE1, Tokamak2,

1http://www.ode.org/
2http://www.tokamakphysics.com/

Newton Game Dynamics3, Havok4, OPAL5, or Bullet.6 On
the other hand, an engine specialized for the simulation of
cars like Racer [12] can be used. In such a case, one is lim-
ited to the properties of the repective engine. Furthermore,
using the engine might either be very costly, or the result
might be restricted to non-commercial use due to legal con-
siderations. Furthermore, the engine of course acts like a
black box without insight into the model solution.

2. RELATED WORK
Basically, there are two types of car physics models found
in the literature. The first one is a very sophisticated type
of model which takes into account as many parts of a car
as possible, like springs, suspensions, 3D landscape, tyre
models and elaborate tyre slip models, etc. Implementing
such a model requires a large amount of effort, its use is for
instance in the car industry or for professional games [6, 11,
9, 21, 2].

The second type of papers describes very basic 2D mod-
els, here mainly taking into consideration engine and cen-
tripetal forces [7, 8, 10, 3, 4]. These models are easily un-
derstood, yet one has the impression that important parts
of the models are missing. Examples for such gaps include
breaking forces due to steering, adding rotational forces to
the tyre traction budget, or the fact that the engine/break
force not only accelerates the car mass (which includes the
tyre masses), but parts of it also must cause the tyres to
rotate. These issues will be treated later in the paper. Also,
their integration and solution is often not obvious.

The aim of this paper is to focus on the second type of pub-
lication, i.e., an easily to be understood 2D model, which
however tries to catch all forces of a car driving through a
2D plane. The presented model is based on so-called Ack-
ermann steering, and consists of closed formulas, thus al-
lowing to gain insight into the model behavior and solution.
Furthermore, the integration and solution of the presented
formulas in a game loop is presented.

3. RIGID BODY DYNAMICS
In this section those principles of rigid body dynamics which
are necessary for understanding the proposed model will be

3http://www.physicsengine.com/
4http://www.havok.com/
5http://ox.slug.louisville.edu/∼o0lozi01/opal wiki
6http://www.continuousphysics.com/Bullet/



described briefly. For more detailed introductions in this
field refer to [7, 8, 4, 5] or various articles at Wikipedia [17].

In the following, the discussion is restricted to the dynamics
of solid cuboids, which are used in this paper to represent
car masses. As a further simplification, we assume that
the cuboid lies flat on a 2D plane, and its movements are
restricted to the movements inside this 2D plane, just like a
car may roll on the flat surface of a street.

Note that in the following, scalars and scalar operations in-
stead of vectors and vector operations will be used wher-

ever possible, since the forces observed are often at right
angles to the main model axes. If used, vectors are explic-
itly denoted by using bold fonts. Also note that throughout
the model, forces and accelerations are kept constant over a
short amount of time dt > 0. In fact, dt is assumed to be
so small that sin dt ≈ dt. This can always be achieved by
letting dt → 0, since it can easily be shown that [18]

lim
x→0

sin x

x
= 1,

for instance by using the Taylor series of sin x [20].

3.1 Translation
Assume a cuboid of length L, width W and height H meters,
and having a mass of M kilograms. The height however will
not be used in the remaider of this paper, its significance is
only given in some cases when the mass of the cuboid has to
be calculated. Assume also that we observe this cuboid from
above, thus not seeing its heigth dimension. Additionally,
the car at time t is at position (x(t), y(t)) in the plane and is
moving upwards in positive y direction with constant velocity

v. This kind of movement is called translation. If no force is
applied to such an object, then the velocity will not change,
and after a time dt has passed, the car’s change of position
dy in the y direction will be

dy = y(t + dt) − y(t) = v dt. (1)

No matter what velocity v(t) the cuboid is travelling at a
time t, when we apply a constant force F to the center of
its mass C (see Fig. 1), v(t) is no more constant, and after
time dt the total change of velocity is given by

dv = v(t + dt) − v(t) =
F

M
dt = a dt. (2)

The factor a = F/M = dv/dt is called the acceleration

Figure 1: A cuboid is accelerated by a force F .

Figure 2: A cuboid rotating about an axis through
its center (a). A force F is applied to a point A (b).

and represents the change of velocity per time unit, i.e., the
first derivative of the velocity. Note that generally v and
a are either both two-dimensional vectors, or scalars, if the
direction is fixed, and only the magnitude is of importance.
Also note that in the above scenario, the change in y-position
dy of the car after dt is

dy = v̄(t, dt) dt = v(t) dt +
a

2
dt2, (3)

due to the fact that the mean velocity v̄(t, dt) of the cuboid
in the time interval [t, t + dt] is given by

v̄(t, dt) =
v(t) + v(t + dt)

2
=

v(t) + v(t) + a dt

2
, (4)

i.e., the mean of v(t) and v(t + dt).

3.2 Rotation
The second important movement a cuboid may carry out
in the plane is rotating about an axis. In this work we al-
ways assume that the rotation axis is perpendicular to the
plane. Fig. 2 (a) shows a cuboid rotating about an axis go-
ing through its center C. Like in the case for translation, we
can define a current state of the object at time t, which is
given by the orientation angle θ(t). Additionally, the change
of this angle, i.e., the angular velocity, is given by ω = dθ/dt,
and angular acceleration is defined to be α = dω/dt. Due
to the rotational movement, a sample point A being at a
distance of R away from the axis, moves along a circle with
radius R. Its velocity vR on this circle is given by

vR = ωR (5)

and likewise its acceleration by

aR = αR. (6)

Acceleration is related to a force F being applied to a point
of the cuboid. Fig. 2 (b) shows the case where a force
F is applied to a point A. Here, the force vector F =
(Frot, Ftran)T must be split into two components. The first

component Frot is perpendicular to the vector
−−→
CA and re-

sults in a rotational force changing ω. The remaining com-
ponent Ftran is simply a translational force and must be
treated as described in (1) to (4). Frot then results in a
torque [15]

T = FrotR. (7)



Figure 3: The base car model with traction forces
(a) and the car movement model (b).

Similar to (2), this torque is then translated into angular
acceleration by

α =
T

I
, (8)

where I is the rotational equivalent to mass called moment

of inertia. For general shapes and axes, I must be described
by means of so-called tensors. However, for a cuboid and an
axis going through the center of mass C and being perpen-
dicular to the upper cuboid face, IC is defined to be [14]

IC =
M(W 2 + L2)

12
. (9)

An important result is given by the parallel axes theorem

due to J. Steiner, which describes the moment of inertia I
if the axis is parallel to the one through C, and having a
distance of R from it [19]:

I = IC + MR2. (10)

4. A 2D CAR PHYSICS MODEL
In the proposed model the car is modelled by a cuboid as
described in the previous section, with length L, width W
and mass M . As convention we always assume that the
car is heading up, i. e., its orientation is along the positive
y-axis.

Furthermore, as a simplification, the car uses only two tyres
instead of four, the tyres being at the middle of the front
and rear sides, depicted in Fig. 3 (a) as points A and B. At
these points, the major forces are exchanged between the
car body, the tyres, the engine and the ground. The figure
also shows the traction force

Ftrac,f =

„

Ftrac,f,x

Ftrac,f,y

«

=

„

cos β − sin β
sin β cos β

« „

Ftrac,f,la

Ftrac,f,lo

«

(11)

at the front tyre, and

Ftrac,r =

„

Ftrac,r,x

Ftrac,r,y

«

(12)

at the rear tyre. Both forces can be split into two com-
ponents. The first is a longitudinal component (Ftrac,f,lo

Figure 4: Ackermann steering and centripetal force.

and Ftrac,r,y), and points into the direction of the respective
tyre. This component is mainly responsible for accelerating
the car. The second component (Ftrac,f,la and Ftrac,r,x) is
the lateral force, which is responsible for keeping the car on
the current track.

Steering is modelled by the steering angle β, which defines
the current angle between the front tyre and the main car
direction (see Fig. 3 (b)). The current velocity of the car
is represented by v. Furthermore, due to steering, the car
may rotate by an angular velocity ω, the rotational axis here
going through point B. However, as later shown in (23), ω
can be computed by β, the current longitudinal velocity v,
and L.

4.1 Limitations of the Model
The described model is kept simple on purpose and does
not implement a number of features. The omitted features,
however, are mostly orthogonal to the model and can be
added to the equations if so desired.

First, the model does not implement weight transfer, which
happens when the car is accelerated [10, 2]. Second, the
model assumes an engine or brake torque to be fed from
the engine into the tyres. Elaborated models for computing
the engine torque as a function of gear and rpm exist, and
can easily be used in addition to this model [21, 10]. Third,
the model assumes only two tyres instead of four, thus blur-
ring the possibility of different forces on the two front or
rear tyres. Fourth, there is no slip between tyres and the
ground, i.e., the slip ratio is set to 1 (see Section 4.6). As
a consequence, there are also no applications of Pacejka’s
Magic Formula, which models properties of the tyre and the
resulting slip [11]. Finally, the presented model does not
contain aerodynamic drag and rolling resistance, which im-
pose a breaking force onto a moving car [10].

The major source for driving a car is of course its engine.
However, once moving, different forces appear and either
move the car to the side or reduce its speed. In the following,
three major types of force are investigated and described by
equations. The integration of these equations into one closed
model is then presented in Section 6.

4.2 Ackermann Steering
For cars there exists a movement model called Ackermann

steering [6] (Fig. 4). The car center C moves along a circle,



Figure 5: Movement model.

the rear tyre moves along a circle being concentric to the first
one, but with smaller radius, and the front tyre moves along
another concentric circle with larger radius. The center D
of the three circles is the intersection of the vectors a =−−→
AD = (ax, ay)T and b =

−−→
BD = (bx, 0)T , which originate

at the tyre centers and which are perpendicular to the tyre
orientations. If β = 0 then the two vectors are parallel and
meet at infinity. Note that for β 6= 0 the center of mass C
circumvents a larger circle than the one B circumvents in
the same time, its velocity vC thus must be larger than the
velocity |vB | of B, the same is true for points A and C. For
β 6= 0 it follows that

|vB| < |vC | < |vA|. (13)

In the following, these properties are the only premises for
the car physics model described in this paper.

Simple calculation shows that the angle in the left corner of
the triangle BDA is also the steering angle β. For given L,
it follows that for β 6= 0 and |β| < π/2

bx = −L cot β (14)

and

a =

„

bx

−L

«

=

„

−L cot β
−L

«

. (15)

Similarly, the vector c =
−−→
CD connecting the center of mass

C with the circle center D is given by

c =

„

bx

−L/2

«

=

„

−L cot β
−L/2

«

. (16)

In the presented model, the car is moved in the following
way (see Fig. 5). In each time period dt, the car first moves
a length of ds = v dt into the direction of the car, then the
car is rotated by an angle of dθ = ω dt, using B as rotational
axis. At this point it must be noted that it is thinkable that
the rotational axis might go through the center or mass C,
an assumption being found in many other 2D models. How-
ever, the following argument does not support this assump-
tion. Suppose the rotational axis goes through C and not
through B. The velocity of point C then is given by vC ,
point B would also have this velocity component, but ad-
ditionally, due to the rotation around C, a second velocity
component being perpendicular to vC . For β 6= 0 it follows
that |vB| > |vC |. This, however is in contradiction to (13).

Due to the rotation, A additionally moves along a circle with
speed ωL. As a consequence, point B moves with velocity

vector vB = (0, v)T , whereas point A moves with velocity
vA = (ωL, v)T , and point C with velocity vC = (ωL/2, v)T ,
which is consistent with (13). If the car moves along a cir-
cle because of steering, this means that the points move at
different circles being concentric, but having different radii.
A travels along the largest circle, while C travels along a
smaller circle, and B again on a smaller circle, exactly as
defined in the Ackermann steering model.

Because of (14), (15), and (16) the relations between the
different velocities are given by

|c|

|b|
=

|vC |

|vB|
=

|vC |

v
=

r

1 +
tan2 β

4
≥ 1, (17)

and

|b|

|a|
=

|vB|

|vA|
=

v

|vA|
= cos β ≤ 1. (18)

4.3 Centripetal Force
If the steering angle β is different to zero, then a lateral force
is put onto the front tyre, pushing the front of the car to the
respective side. For a fixed β, the car then travels along a
circle. If an object with mass M moves with velocity v along
a circle with radius R, then there must be a centripetal force

Fcp pushing the object center C to the circle center. The
length of Fcp is known to be [13] (see Fig. 4)

|Fcp| =
M |vC |2

R
. (19)

From (16), (17) and (19), and noting that in this case R =
|c|, we get

Fcp =
M (1 + tan

2 β

4
) v2

|c|

c

|c|

=
−M (1 + tan

2 β

4
) v2

L(cot2 β + 1/4)

„

cot β
1/2

«

=
−Mv2 tan2 β

L

„

cot β
1/2

«

(20)

This is the centripetal force pulling the car towards the cen-
ter of the circle it runs on. Also, it must be poduced by the
lateral (cornering) forces of the front and rear tyres which
are parts of the overal traction forces. Thus the next step
is to split Fcp = Fcp,f + Fcp,r into two cornering forces
originating at the front (Fcp,f ) and rear tyres (Fcp,r), and
pointing along the vectors a and b towards D. Since the
forces responsible for the car rotation are modelled in Sec-
tions 4.4 and 4.5, the forces Fcp,f and Fcp,r treated here do
not change the car’s rotation. From the description of rota-
tional forces in Section 3 it follows that the force components

which are perpendicular to the vectors
−→
CA and

−−→
CB must be

equal. When the car points up these components are the
x-coordinates of Fcp,f and Fcp,r, which therefore must be
equal:

Fcp,f =
−Mv2 tan2 β

L

„

cot β

2

1/2

«

, (21)

and

Fcp,r =
−Mv2 tan2 β

L

„

cot β

2

0

«

. (22)



Figure 6: Forces causing the car to rotate.

It is worth noting that the centripetal forces Fcp,r and Fcp,f

depend on the current steering angle β and the current ve-
locity v, but not on the steering change dβ/dt. Also note
that both forces approximate the zero vector for β → 0.

4.4 Car Rotation
A car travelling along a circle will also rotate as described in
Section 3.2. Assume that the car is travelling with velocity
v around a circle with radius R and circumference l = 2Rπ.
Since for a complete run around the circle it needs the time
dt = l/v and rotates around an angle dθ = 2π, the rotation
is carried out with angular speed ω = dθ/dt. Since v is the
velocity of point B we set R = −bx and derive because of
(14)

ω =
dθ

dt
=

2π

l/v
=

v

−bx

=
v

L cot β
=

v

L
tan β. (23)

Consider the car in Fig. 6. The force responsible for the
rotation is Frot,f = (Frot,f,x, Frot,f,y)T caused by the front
tyre. To be exact, only the x-coordinate Frot,f,x causes the
rotation, the other component Frot,f,y acts as a breaking
force.

Since we assume that the car’s rotation axis goes through
its rear tyre, from (10) we know that the car’s moment of
inertia is IB = IC + M L2/4. Thus, if the velocity v or the
steering angle β change within a time dt by the amount of
dv or dβ, then from (23) we get [16]

α =
dω

dt
=

tanβ

L

dv

dt
+

v

L cos2 β

dβ

dt
. (24)

Following (7) and (8), the force component Frot,f,x of the
front tyre must be

Frot,f,x = −
α IB

L
= −

IB

L2

„

tan β
dv

dt
+

v

cos2 β

dβ

dt

«

, (25)

and furthermore

Frot,f,y = Frot,f,x tanβ

= −
IB tan β

L2

„

tan β
dv

dt
+

v

cos2 β

dβ

dt

«

. (26)

Another aspect of rotation is the fact that the car rotates
around an axis going through point B. This rotation also
demands a centripetal force Fcp,B, pushing the car against
B, since without this force the car would rotate around its
center of mass C. As the centripetal force always points

Figure 7: A force causing a cuboid to rotate (a)
and application of two forces additionally causing
an acceleration a (b).

to the rotational axis, the only point where such a force
might be created is the front tyre. From there, it must point
straight down to the rear tyre, i.e., its x-coordinate must be
zero. Similar to (19), and by using (23), the y-coordinate of
this force then must be

Fcp,B,y = −
M (ωL/2)2

L/2
= −

Mv2 tan2 β

2L
,

which is the same as the y-coordinate Fcp,f,y of the cen-
tripetal force at the front tyre Fcp,f as given by (21). In
fact, this argument proves that the same force Fcp,f that is
responsible for keeping the car on its track at the front tyre
also is responsible for letting the car rotate around its rear
tyre, and not its center of mass.

4.5 A Mysterious Force
At this point it must be noted that there is also a lateral
force at the rear tyre responsible for the rotation, though
this force may not be visible at first sight. Think of a force
causing a cuboid to spin. If only one force is applied, then
the cuboid must rotate around its center of mass C. How-
ever, in the presented model, the rotational axis is the rear
tyre, not the center of mass. It follows that there must be a
second force, this time a lateral force Frot,r = (Frot,r,x, 0)T

at the rear tyre, which shifts the rotational axis to the rear.

Consider the scenario depicted in Fig. 7 (a). A force Frot,f,x

induces an angular acceleration

α =
Frot,f,xL/2

IC

which in turn will cause the cuboid to rotate about the axis
going through its center of mass C. The angular acceleration
also causes an acceleration l′′ = αL/2 of point B.

Now consider Fig. 7 (b). Here, B is fixed to an axis and
Frot,f,x causes some Frot,r,x to press against this axis, caus-
ing an equal force into the opposite direction. The result is
that the force causing rotation now is only Frot,f,x−Frot,r,x:

α =
(Frot,f,x − Frot,r,x)L/2

IC

and the acceleration of B is given by

l′′ =
(Frot,f,x − Frot,r,x) L2/4

IC

.



Figure 8: Acceleration forces at the tyres and the
car body.

Additionally, the center of mass C is accelerated by

a =
Frot,r,x

M
.

Now in order that B remains on its position, it follows that

l′′ = a. (27)

Simple calculation shows that (27) leads to

Frot,r,x =
IB − IC

IB

Frot,f,x (28)

which denotes the lateral force Frot,r,x at the rear tyre in
case there is a lateral force Frot,f,x causing rotation at the
front tyre.

4.6 Acceleration
The last movement component of the presented model is
given by the longitudinal acceleration dv/dt of the car body.
Recall the basic car force model as depicted in Fig. 3 (a).
Also recall the definitions of the traction forces Ftrac,f by
(11) and Ftrac,r by (12).

Longitudinal acceleration mainly is created by the car engine
and the tyre breaks. An engine puts a torque Te,r to the
rear axle, which itself forwards this torque to the rear tyre
(in this model there is only one central tyre). This torque
then results in an angular acceleration of the rear tyre, and a
traction force Ftrac,r,y between the rear tyre and the ground.
This traction force then accelerates the car body (and the
car body then accelerates the front tyre). Alternatively, the
tyre breaks would cause negative torques Te,r at the rear
and Te,f at the front tyre. In the presented model, there
is no slip ratio between the tyres and the ground. If a slip
ratio is desired, then the model must be augmented with a
corresponding slip factor.

In order to establish the corresponding equations, we define
the radius of a tyre by Rw, and the tyre inertia by Iw. Note
that the engine torque is split into two parts, a Ttrac,r,y

creating the traction force Ftrac,r,y, and the second part
Ttot,r actually accelerating the rear tyre (Fig. 8). By noting
(7) we get:

Ttot,r = Te,r − Ftrac,r,y Rw. (29)

At the front tyre things get more complicated. The traction

force at the front tyre actually is the sum

Ftrac,f = Fcp,f + Frot,f + (30)

+

„

cos β − sin β
sin β cos β

« „

0
Facc,f

«

.

Here the force Facc,f is used similarly to Ftrac,r,y in (29):

Ttot,f = Te,f − Facc,f Rw. (31)

By using (21), (26) and (30), the y-coordinate of Ftrac,f is
given by

Ftrac,f,y = Fcp,f,y − (32)

−fr

„

tan β
dv

dt
+

v

cos2 β

dβ

dt

«

+

+Facc,f cos β,

here setting

Fcp,f,y =
−Mv2 tan2 β

2L

and

fr :=
IB tan β

L2
. (33)

For the car body, the longitudinal traction forces sum up
and result in the total longitudinal acceleration force Ftot

on the car body:

Ftot = Ftrac,r,y + Ftrac,f,y. (34)

Note that in (34), the term Ftrac,f,y can immediately be
replaced by the right hand side of (32). Equ. (34) is also
a good place for adding additional terms for various drag
forces, which is not done here. What remains is the coupling
between the rotational acceleration of the tyres and the car
acceleration, which due to (2), (6), (7), (8), and (18) result
in

dv

dt
=

Ftot

M
=

RwTtot,r

Iw

, (35)

and

dv

dt
=

Ftot

M
=

|vB|

|vA|

RwTtot,f

Iw

= cos β
RwTtot,f

Iw

. (36)

The meaning of the system of linear equations (29) to (36) is
this: if a torque is put onto the rear (front) tyre, this torque
is split into the parts accelerating the rear (front) tyre, the
front (rear) tyre and the car body. The velocity of the car
mass is equal to the rotational velocity of each tyre. How-
ever, the velocity of the front tyre must be multiplied by a
term which corrects the different movement radii. Addition-
ally, if a slip ratio different to 1 is desired, it can be added
to (35) and (36).

The above system of linear equations (29) to (36) can be
solved analytically. The solution for Ftot is given by

Ftot =
MR2

w

“

Fcp,f,y − fr v

cos2 β

dβ

dt

”

2 Iw + (M + fr tan β)R2
w

+ (37)

+
MRw (cos β Te,f + Te,r)

2 Iw + (M + fr tan β)R2
w

The first summand of (37) denotes the rotational and cen-
tripetal forces, while the second part denotes the engine and



Parameter Value Unit Explanation
W 2 m Car width
L 4 m Car length
M 1500 kg Car mass
Rw 0.33 m Radius of tyre
Iw 2 × 4.1 kg m2 Inertia of tyre

Table 1: General model parameters.

break torques. Furthermore, from (37), the other unknowns
Ttot,r, Ttot,f , Ftrac,r,y, and Facc,f can easily be derived using
equations (29) to (36). Although (37) looks quite compli-
cated, for β ≈ 0 it changes into a much simpler form, because
in this case cos β ≈ 1 and tanβ ≈ fr ≈ Fcp,f,y ≈ 0:

Ftot ≈
MRw (Te,r + Te,f )

2Iw + MR2
w

.

The M in the numerator is of course the car mass, while the
denominator represents the inertia of both tyres plus the car
mass. Additionally, the numerator just sums up the engine
and break torques of the rear and front tyres.

5. TRACTION
The traction forces depicted in Fig. 3 (a) are exchanged
between the tyres and the ground. However, there is a limit
Fmax to the amount of force that can be exchanged. If the
traction force on one of the tyre exceeds this bound, then
the tyre looses grip and starts sliding. It follows that the
model must continuously check whether the traction forces
exceed the maximum. In such a case, the model then must
switch to an appropriate sliding model, which is not treated
in this work, but for instance in [10].

Following [6], Fmax is determined by the static friction factor
µs in the following way. If F denotes the force that presses
down the tyre to the ground, then

Fmax = µs F.

Here, F is the amount of weight force on one tyre, i.e., in
the presented model F = 9.81M/2. Values for µs are, for
instance, µs = 1.0 for rubber on dry concrete ground, or
µs = 0.3 for rubber on wet concrete ground. If the car
starts sliding, then the force exchanged between tyre and
ground is asssumed to be constant: Ftrac = µk F . Here
µk denotes the kinetic friction factor which, for instance is
µk = 0.8 for rubber on dry concrete ground, or µk = 0.25
for rubber on wet concrete ground. Other values for µs and
µk can be found, for instance, in [6, 1].

6. MODEL SOLUTION
The previous sections have presented numerous equations,
their integration into a closed model is described in this
section.

For solving the model, we now define a set of parameters
and input variables which define the state of the model and
user input. The set of basic model parameters is shown in
Tab. 1.

The current model state is given by the velocity vB = (0, v)T

of point B. User input is given by the steering angle β

InitializeModel();

double lasttime = now();

while( true ) {
Input input;

GetUserInput( input );

double time = now();

ComputeModel( input, time - lasttime );

RenderTheScene();

lasttime = time;

}

Table 2: The game loop.

and the engine/break torques Te,r and Te,f as defined in
Section 4.6.

The game loop, which is executed continuously throughout
the game, is shown in Tab. 2. At first the user input is
queried from either keyboard or joystick. Then the function
responsible for computing the model is called. Its input
parameters are the user input, here a structure holding β,
Te,r and Te,f , and the time since its last call.

The code for computing the model itself is shown in Tab. 3.
The function is called after some time dt has gone by. The
function then computes the model behaviour for the last dt
seconds, i.e., for the time interval that has passed by. The
structure oldinput stores the user input that was recorded
at the start of this interval, while the structure input holds
the user input at the end of the interval. Engine and break-
ing forces either can be taken from oldinput and can be kept
constant throughout the interval, or the average between the
engine and breaking forces of oldinput and input can be
used. In Tab. 3 the first alternative is chosen.

7. EXPERIMENTAL RESULTS
The pseudocode from Tab. 3 has been implemented by us-
ing Mathematica 5.2.7 The implementation has been used
for running a number of experiments. The purpose of the
experiments was to test whether the presented model can
be implemented as described in Tab. 3 and yields numerical
results that make sense. Also the experiments should show
the magnitude of the observed traction forces, including cen-
tripetal forces (which are mainly used in other models), but
also the additional forces as described in this paper, and
furthermore investigate the usefulness of the given explicit
formulas for explaining numerical results.

In the first set of experiments, the car is only accelerated
without steering, i.e., β = 0 and Te,r > 0. Furthermore, it is
assumed that acceleration on the front tyre is only done via
the brakes, which are not used in the presented experiments.
Thus, throughout all experiments, Te,f = 0. Also, the time
difference was set to dt = 10ms. The traction forces and
the force on the main car body for acceleration only can be
seen in Fig. 9. The figure additionally shows the maximum
allowed forces for dry (upper horizontal thin line) and wet
(lower horizontal thin line) ground, as defined in Section 5.
If the traction force at any tyre exceeds this bound then
the car starts sliding. It can be seen that almost all of the

7http://www.wolfram.com/



Input oldinput;

double v = 0;
ComputeModel( Input input, double dt ) {

if( dt > 0 ) {
β = oldinput.β
dβ = input.β − oldinput.β
Te,f = oldinput.Te,f

Te,r = oldinput.Te,r

Compute ω from (23)

if( β 6= 0 ) {
Compute Fcp,f from (21)

Compute Fcp,r from (22)

} else {
Fcp,f = (0, 0)T and Fcp,r = (0, 0)T

}
Compute fr from (33)

Compute Ftot from (37)

a = Ftot/M
Compute α from (24)

Compute Ftrac,r,y, Facc,f, Ttot,r, and Ttot,f

from (29) to (36)

Compute Frot,f from (25) and (26)

Compute Frot,r from (28)

Ftrac,r = (0, Ftrac,r,y)
T + Fcp,r + Frot,r

Compute Ftrac,f from (30)

Fmax = 9.81 M/2
if( |Ftrac,r| ≤ Fmax && |Ftrac,f | ≤ Fmax ) {

Advance the car by ds = v dt + a dt2/2
Rotate the car by dθ = ω dt + α dt2/2
v = v + a dt

} else {
Switch to sliding model

}
}
oldinput = input;

}

Table 3: Computing the model.

resulting body acceleration Ftot is due to the rear traction
force Ftrac,r,y. The front traction force Ftrac,f,y here only is
responsible for accelerating the front tyre.

In the next experiments it is assumed that the car is travel-
ling with some velocity v > 0 and a nonzero steering angle
β > 0. However, there is no engine or break torque on the
tyres. At first, the steering angle β was set to 1 degree, and
the steering angle change dβ/dt was set to dβ/dt = 0, 1, 5,
and 10 deg/s. The resulting front traction force |Ftrac,f | is
shown in Fig. 10. Here it must be noted that if β 6= 0 and
dβ/dt = Te,r = Te,f = 0, then the car body acceleration
force Ftot is quite small, but due to the y-coordinate of (21)
not zero. It follows that dv/dt is also quite small, result-
ing due to (24) in a small rotational force Frot,f and Frot,r.
Thus, the observed traction forces are mainly caused by the
centripetal forces, i.e., Ftrac,r ≈ Fcp,r and Ftrac,f ≈ Fcp,f .
If however the steering angle changes, then it can be seen
that the traction forces quickly rise. This additional growth
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Figure 9: Forces caused by acceleration only (β =
0, dβ/dt = 0, Te,f = 0).
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Figure 10: Front traction force |Ftrac,f | caused by
steering only (β = 1deg, Te,r = 0, Te,f = 0). For
dβ/dt = 0, |Ftrac,f | is almost equal to |Fcp,f |.

is caused by the rotational forces Frot,r and Frot,f , which
additionally are shown in Fig. 11.

The same experiments have been repeated, this time setting
β = 3deg. The results are shown in Figs. 12 and 13. Es-
pecially Fig. 12 shows that when the steering angle is that
large then the traction forces soon become too large and
steering is impossible.

The final experiments investigate which values for β and
dβ/dt do not cause sliding when driving with a certain ve-
locity v. In Fig. 14 the maximal allowed steering angle β
is shown for dry and wet ground. The thin horizontal lines
are drawn at β = 1 deg and β = 3 deg. The results may, for
instance, be used to implement a virtual steering assistance
system which prohibits sliding by automatically reducing β,
in case the traction forces grow too large.

For β = 1deg and β = 3deg it has then been investigated
how fast the driver may change the steering angle without
causing the car to slide. The results are shown in Fig. 15,
again for dry and wet ground. The lines end at the points
where the traction force is already too large only because of
β 6= 0 (compare to the intersections of the thick lines and
the thin horizontal lines in Fig. 14).
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Figure 11: Rotational forces |Frot,f | (thick lines) and
|Frot,r| (thin lines) caused by steering only (β = 1
deg, Te,r = 0, Te,f = 0).
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Figure 12: Front traction force |Ftrac,f | caused by
steering only (β = 3deg, Te,r = 0, Te,f = 0). For
dβ/dt = 0, |Ftrac,f | is almost equal to |Fcp,f |.

8. CONCLUSIONS
In this paper a detailed car physics model for Ackermann
steering is presented. The model consists of closed for-
mulas which derive all necessary forces and thus accelera-
tions for simulating Ackermann steering. In particular, cen-
tripetal forces, rotational forces and acceleration forces are
described. An interesting result is given for rotational forces
at the rear tyre. Furthermore, the identity of a component
of the centripetal force at the front tyre, and the force being
responsible for rotating the car about its rear tyre is shown.
It is then demonstrated how to use the model in a game
loop. Finally, an implementation of this loop is used for
carrying out a number of numerical experiments.

The model does not include things like weight transfer, tyre
slip or engine power. These have been investigated thor-
oughly in previous papers and can be included into the
model easily.

Future work will focus on sliding models, which will model
the case when only the front tyres, only the rear tyres, or
all tyres loose traction.
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Figure 13: Rotational forces |Frot,f | (thick lines) and
|Frot,r| (thin lines) caused by steering only (β = 3
deg, Te,r = 0, Te,f = 0).
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Figure 14: Maximum allowed β (deg) for front trac-
tion force |Ftrac,f | caused by steering only (dβ/dt =
0, Te,r = 0, Te,f = 0).
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Figure 15: Maximum allowed dβ/dt (deg/s) for front
traction force |Ftrac,f | caused by steering only (Te,r =
0, Te,f = 0).
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