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Abstract 
 
Future cellular mobile networks will be limited by the 

number of channels available in each cell. On the other 
hand, new broadband applications like video telephony 
will demand tight quality of service guarantees that must 
be met by the network at all times. Thus, advanced 
mechanisms for allocating these channels to incoming 
calls with different quality of service level will be of 
utmost importance. In this paper we introduce a new 
analytical model for cell channel allocation to multi- 
class traffic. Being based on Markov chains, the new 
model exploits the multi-class property and reduces the 
state space dramatically, thus enabling the solution  of 
previously unsolvable problem classes. We additionally 
describe CECALL, a simulator implementing several 
different strategies for allocating cell channels to multi-
class traffic, handoff pre-reservation and degradation of 
low-level call classes. The results of the analytical model 
are used for explaining important simulation results. 

 
 
1. Introduction 

 
Future cellular networks like UMTS will be able to 

transport both multimedia and data traffic at high 
bandwidths, enabling new applications like video 
telephony and streaming TV or video on demand from the 
Internet. However, the bandwidth of such a cellular 
network is limited by the available radio resources in each 
cell. These resources are typically defined by a number N 
of channels that may be used for transportation of digital 
data between the user and the cell base station. Channel 
multiplexing is performed by TDMA, FDMA or CDMA. 
The more channels are used by a single call, the more 
data can be transferred per second. Different applications 
will depend on different quality of service (QoS) 
requirements, resulting in multi-class traffic. Network 

users will then define their required QoS level by 
establishing contracts with the network. Violating these 
contracts may lead to dissatisfied users and potential loss 
of revenue. Hence it is crucial for network managers to 
provide sufficient resources and sophisticated resource 
allocation strategies in order to guarantee the agreed QoS 
contracts. 

Before actually implementing such a network, it is 
advisable to model the relevant infrastructure 
architectures and perform analytical or simulation based 
evaluation. Analytical models often are based on steady-
state analysis of Markov chains, queuing networks [5] or 
Petri nets [1], the two latter ones usually being again 
mapped on Markov chains. The drawbacks of these 
approaches often include unrealistic assumptions on the 
observed traffic and the often observed explosion of the 
Markov chain state space. 

There are several ways for reducing the state space of 
large Markov chains, for example by reducing the model 
complexity, analyzing the structure of the Markov chain 
generator matrix [7] or aggregating closely related states 
into one macro-state [5, 8]. Depending on whether the 
Markov chain is exactly, ordinarily, or nearly lumpable, 
these aggregation techniques will yield exact solutions 
(for the whole chain or only the aggregated chain) or only 
approximations [9, 6]. 

In this paper an exact model for the channel allocation 
of multi-class traffic in cellular networks is described. By 
exploiting the multi-class domination property, the size of 
the state space can be reduced drastically, thus enabling 
the solution of previously unsolvable problems. We also 
describe the CEll Channel ALLocation simulator 
CECALL [11] for evaluating different network scenarios. 

 
2. Related Work 
 

Creating analytical models for channel allocation with 
QoS guarantees in cellular networks has been studied by 



several authors [12, 15, 14, 10]. Here, single cells and 
groups of cells together with their interaction have been 
studied, both at the channel and packet level. In [4], 
models for multi-class traffic are described and solved 
with a numerical package for Petri nets. Generally, 
Markov chains modeling multi-class traffic will suffer 
from a large state space due to the need for using multi-
dimensional Markov chains [2]. Thus, an alternative to 
analytical models is given by simulation [13, 11]. The 
drawbacks of simulation, however, are given by the long 
and error prone software development, the possibly long 
simulation runs and the difficult interpretation of the 
results [3]. 
 
3. Modelling Cellular Networks 

 
The used model describes the call admission of a 

single cell A being part of a larger cellular radio network 
[11]. Calls originating in this cell may be of type 
guaranteed or best effort. Guaranteed calls represent 
normal voice or video calls enjoying high priority and 
QoS guarantees for their assigned QoS level. Best effort 
calls denote low priority data connections and are tolerant 
with respect to loosing once allocated channels down to a 
minimum number of required channels. Additionally, 
handoff calls denote guaranteed calls entering cell A from 
a neighboring cell. The system structure is shown in 
Figure 1.  
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Figure 1. Model Structure. 

The call arrival rate hgb λλλλ ++=  is the sum of the 
rates of the above mentioned call classes. While best 
effort (rate bλ ) and guaranteed (rate gλ ) calls enter the 
simulated cell directly (as this is their point of origin), 
handoff calls (rate hλ ) first enter a neighboring cell and 
immediately signal their presence to cell A. After a so-
called activation time a has passed, handoff calls sub-
sequently enter cell A.  

The reason for making a distinction between these call 
types stems from the fact that from the viewpoint of the 
cell, calls may either originate in it or enter from outside. 
As best effort calls are not able to pre-reserve channels, a 
distinction between the two origins is not necessary. On 
the other hand, handoff calls may pre-reserve channels 
during their activation time, thus limiting the available 
channels for other guaranteed calls. Therefore, a 
distinction must be made between guaranteed calls 
originating in cell A or handoff calls entering from 
outside. However, there is no distinction between call 
termination and changing the cell, in each case, the 
respective call will give back its allocated channels. 

Each call entering cell A must be assigned a minimum 
number of channels from the N channels managed by A. 
Best effort calls additionally request more channels up to 
a certain maximum number, but can operate with any 
number of channels within the predefined range. If there 
are enough free channels, they are assigned to the newly 
arrived call and the call may proceed. After the call's 
holding time µ/1=h  has passed, the call terminates or 
leaves the cell and allocated channels are returned to the 
call admission control where they may be reassigned to 
other calls. 

On the other hand, if there are not enough channels left 
for a new call, a call originating at cell A is said to be 
blocked and terminates immediately, and a handoff call 
being transferred from a neighbor cell is said to be 
dropped. In real life, a dropped handoff call experiences a 
sudden loss of connection when moving from one cell to 
another and is considered to be most inconvenient to the 
network user. 

Several different strategies for channel assignment and 
best effort degradation have been implemented in the 
simulation tool CECALL (see Section 5). The basic 
strategies include: 

• Complete Sharing (CS): No partitioning, no 
prioritization, no pre-reservation. All calls have equal 
access to the channels. 

• Complete Partitioning (CP): The available N 
channels are partitioned such that for each of the 
three call classes, 3/N  channels are available. 

• Fractional Guard Channels (FG): A subset of size H 
of the channels is pre-reserved for handoff calls only. 
However, if all remaining  HN −  channels are allo-
cated and a new guaranteed call arrives, it is admitted 
with probability 10 ≤≤ p . If 0=p  then this is  
equivalent to the strategy of guard channels [10]. 

• Dynamic Resource Partitioning (DRP): Arriving 
guaranteed and handoff calls may take away channels 
from best effort calls, degrading them, if their new 
number of channels does not fall below the required 
minimum (degradation phase), or interrupting them, 
if no such best effort call is found (interrupt phase). 



Additionally, handoff calls currently being in a 
neighbor cell may passively reserve channels in cell 
A. These channels then can not be used for arriving 
guaranteed calls. However, they can be assigned to 
best effort calls for temporary use. 

The remainder of this paper will be concerned with 
strategy DRP only. In this strategy two different call 
classes exist (guaranteed/handoff and best effort), where 
the guaranteed/handoff class dominates the best effort 
class in the sense that arriving guaranteed/handoff calls 
may take away channels from active best effort calls. 

The model is based on three assumptions. Firstly, each 
handoff call being generated in a neighbor cell will 
eventually enter cell A. Secondly, a best effort call can 
only be degraded or interrupted, but can not be reassigned 
channels again. Thirdly, the call holding time does not 
change if a best effort call is degraded. 

Typical performance measures important for network 
planners include: 

1. Probability that guaranteed or best effort calls are 
blocked. 

2. Probability that handoff calls are dropped. 
3. Probability that best effort calls are degraded (and 

how often they are degraded). 
4. Throughput for all call classes.  

Generally, these measures will depend on the input 
parameters ,λ a, h and N  in a non-linear manner. 
 
4. Analytical Evaluation 

 
In this section, an analytical approach for evaluating 

the dynamics of the above described cell model are 
explained. However, the analytical model solves only a 
submodel of it. The activation time a is set to zero so that 
there can be no pre-reservation for handoff calls and both 
guaranteed and handoff calls are treated alike. Also, best 
effort calls can not allocate more channels than their 
minimum. This means that all call types allocate a certain 
number of channels at call start and keep them until call 
termination, implying that all best effort call degradations 
result in interruption of the respective calls. 
 
4.1. General Solution 

 
Solutions for the described model can be found by 

creating a continuous time Markov chain (CTMC) with 
state space 
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with 0,0 ≥≥ ji bg , where ig  denotes the number of 
guaranteed calls of type i currently in the cell, each using 
i channels, and jb  denotes the number of best effort calls 

of type j currently in the cell, each using j channels. The 
rate of transition 

21 ssT →  of moving from an arbitrary state 

1s  to another state 2s  is derived from the individual 
arrival and departure rates 

jiji bgbg µµλλ ,,, , and the ig  

and jb  of 1s . 
Provided the Markov chain is in state 

),...,,,...,,...,( 111 uti bbgggs =  and a guaranteed call of 
type i arrives, the chain moves to state 

),...,,,...,1,...,( 112 uti bbgggs += , if i channels are 
available. Otherwise, some of the best effort calls are 
interrupted (loosing all their allocated channels) and the 
Markov chain moves to state 

),...,,,,...,1,...,( 221113 uuti kbkbkbgggs −−−+=  accor-
ding to the following strategy: 

1. All currently free channels are assigned to the 
arriving call. 

2. A minimum number of best effort calls will be 
interrupted. 

3. In case, there are several choices for interrupting a 
minimum number of calls, the calls to be interrupted 
are chosen such that a minimum number of channels 
are additionally freed by interrupting them. For 
example, if three best effort call types exist )3( =u  
and one channel must be freed, and the system is in 
state 0,0 21 >= bb  and 03 >b , then one call of type 
2 is chosen for interruption, because this would 
additionally free one channel, whereas interrupting a 
type 3 call would additionally free 2 channels. 

In case i channels can not be obtained even by 
interrupting all active best effort calls, the incoming 
guaranteed call is blocked and the state remains 
unchanged. For example, if 2=u  and a newly arriving 
guaranteed call requires five channels, but only three are 
free, then the following table shows which best effort 
calls are interrupted: 

 
),( 21 bb  Interrupted best effort calls 

)0,0(  or )0,1(  None (arriving g call blocked) 

11 1
)0,( >bb  Two best effort calls of type 1 

021 2
),( >bbb  One best effort call of type 2 

 
The Markov chain would then be transformed into a 

system of linear equations (usually represented by a 
highly sparse matrix) reflecting the steady-state [5], with 
one unknown and one equation for each element of the 
state space. The solution of these equations then denotes 
the probability of being in any state of N

utS , . When 

denoting the size of N
utS ,  by N

utL ,  and using ordinary 



solution techniques for the system of linear equations, 
then the size of the matrix (and thus the size of the 
memory necessary for storing this matrix) will be 

2
, )( N
utLO  and the number of necessary operations in order 

to obtain the result will be of order 3
, )( N
utLO . However, 

by using appropriate sparse representations and special-
purpose sparse solvers, this can be reduced significantly. 
Once, the solution of these equations is known, additional 
measures like the probability of guaranteed call blocking 
can be easily derived from them [4, 11]. 

Unfortunately, at high dimensions, the size of the state 
space will explode. By using fundamental theorems from 
discrete mathematics, the size of the state space can be 
computed using generating functions. A generating 
function )(xF  is equivalent to a series 0}{ >= nnaA  if 
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larger than 0. Due to the theorem of Taylor, given )(xF , 

the coefficients na  of the series expansion of )(xF  are 
defined to be 
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where )()( xF n denotes the thn  derivative of )(xF . When 

defining )(, xS ut  to denote the generating function for the 

state space size of N
utS ,  the following is easily derived: 
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Using (2) on (3), na  will yield the size of n
utS , .  
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Figure 2. Size of the state space N
utS , . 

Figures 2 and 3 show, how the size of the state space 
depends on ut, and N . Here N

tS  denotes a state space 

containing only guaranteed calls. It can be seen that even 
for moderate sizes of ut, and N , the state space for N

utS ,  
is far too large to be solved by any modern computer. 
Unfortunately, the Markov chain N

utS ,  does not satisfy the 
exact lumpability condition [6] over any reasonable 
partition, and thus, traditional aggregation schemes can 
not be applied for reducing the state space. 
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Figure 3. Size of the state space N

tS . 
 
4.2. Solution by Exact Aggregation 

 
Figure 3 shows that the state space for N

tS  is of 

several orders of magnitude smaller than the one for N
utS ,  

(see Figure 2). Also it must be noted that there exists an 
analytical solution for the Markov chain representing N

tS  
[2]: 
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where the sum goes over all possible states and the 
constants 

kk ggka µλ /= define the load (in Erlang) of 
call type k imposed on the system. Further examination of 
the model shows that guaranteed calls have priority over 
best effort calls in the sense that they may take away 
channels from best effort calls if needed and available. 
Thus, from the viewpoint of guaranteed calls, best effort 
calls are invisible and have no influence on their 
behavior. Therefore, the probabilities of states of 
guaranteed calls can be computed independently of the 
best effort calls. The transitions of guaranteed calls occur 
as if all the channels are available to them. Thus, in order 
to determine the behavior of guaranteed calls, it is 
sufficient to solve the N

tS  chain using (4) instead of N
utS , . 

In order to compute the corresponding best effort call 
state probabilities, the state space N

tS  is then collapsed 



into an equivalent chain },...,1,0|){( NggG N == . Here, 

)(g  represents all states of N
tS  where g  channels are 

occupied. Using (4), the probability for being in state )(g  
is then given by 
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Hence the exact solution of NG  is determined by (5). 
The corresponding transition rates from an arbitrary state 

)(g   to possible successor states can also be derived as 
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where ti ,...,2,1=  and )( ig g
i

µ  denotes the departure rate 

of calls of type i  when there are ig  such calls. The chain 
NG  is then used for constructing a larger chain 
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with transition rates for transitions from state 
),...,,( 1 ubbg to possible successor states described in 

Table 1.  In this table, ‘b’ denotes best effort calls, ‘g’ 
denotes guaranteed calls, ‘a’ denotes a call arrival, and ‘d’ 
denotes a call departure. The transitions can only occur if 
the successor state belongs to N

uGS . The transitions in the 
last row occur with best effort call interruption. In this 
case, the ski '  are determined according to the 
interruption strategy described in Section 4.1.  It must be 
noted that from the viewpoint of best effort calls, N

uGS  is 

equivalent to the original Markov chain N
utS ,  since all 

state information of the guaranteed calls that can affect 
best effort calls is reflected by g , the number of channels 
occupied by guaranteed calls. 

By solving the steady-state equations of the Markov 
chain N

uGS , the probabilities 
ubbgP ,...,, 1

 for being in state 

),...,,( 1 ubbg  can be computed. It is worth noting that the 

state space of N
uGS  is much lower than the one of N

utS ,  
(see Figures 4 and 5). 

The above-obtained results then can be used for 
computing the stationary probabilities of the original 
Markov chain N

utS ,  exactly. 
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 and gP  is derived from (5). 

 

Table 1.  Transition rates of N
uGS . 
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4.3. Extension for Arbitrary Number of Traffic 
Classes 

 
The above described procedure can even be applied for 

an arbitrary number of call classes ,...,,,, dcbg  such that 
g  calls dominate b  calls, which in turn dominate c  
calls, and so on. This means that arriving g  calls can take 
away channels from bcd ,,...,  calls in that order, b  calls 
can take away channels from cd ,...,  calls in that order 
and so on. In this case, the state space N

wvutS ,...,,,  to be 
solved is given by 
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It is clear that even for a small number of traffic classes 
this state space can not be solved directly. However, by 
exploiting the property of successive domination of call 
classes and repeatedly using the above described 
aggregation method, the following sequence of Markov 
chains is created and solved: 
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Similar as in (8), the sequence of solutions can then be 
combined in reverse order to compute the solution for the 
original Markov chain N

wvutS ,...,,, , and arbitrary partial 
intermediate solutions if needed. It follows that instead of 
solving the Markov chain N

wvutS ,...,,,  of ...++++ wvut  
variables, the largest Markov chain, which needs to be 
solved by the above aggregation method, depends only on  

,...}},,max{1,max{ wvut +                   (9) 
variables. Figures 4 and 5 show the ratio of the size of the 
original state spaces to the size of the maximum state 
spaces to be solved in the above aggregation method (9). 
 
5. The Simulator CECALL 

 
As already described in Section 3, in the current 

version of CECALL, several different strategies for 
managing the call access control have been implemented. 
The remainder of this section will focus on the strategy 
DRP and its different versions. 

In DRP, newly arriving guaranteed and handoff calls 
can take away channels from already running best effort 
calls. If due to such a channel loss the number of 
allocated channels of a best effort call drops below its 
channel minimum, the call is said to be interrupted and 
terminates, thus deallocating all its still allocated 
channels. For finding the next channel to be taken away 
from a best effort call, all DRP versions implement a two-
phase approach. In the first phase, channels are taken 
away only from those best effort calls that can spare 
channels without being interrupted. If no such calls exist, 
DRP enters the second phase, where best effort calls are 
chosen to be interrupted.  

Additionally, if a handoff call is created, i.e., it arrives 
at a neighbor cell, it tries to pre-reserve channels in cell A. 
This procedure, however, is carried out only if enough 

channels exist that can be reserved. Otherwise, the 
handoff call will not reserve any channels and will enter 
cell A like a normal guaranteed call. If at this point in 
time there are still not enough either free or unreserved 
best effort channels, the handoff call terminates and is 
counted as being dropped. The channel reservation again 
follows a two-phase scheme by first reserving only 
unused and unreserved channels, and, if no such channels 
are available, by secondly choosing channels currently 
being used by best effort calls, which have not been pre-
reserved by other handoff calls so far. 
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Figure 4. State space saving factor when using a state 
space with maximum dimension (9) instead of taking 

N
wvutS ,...,,, . For each call class, calls may use either one 

or two channels. 
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Figure 5. State space saving factor when using a state 
space with maximum dimension (9) instead of 
taking N

wvutS ,...,,, . For each call class, calls may use 
either one, two or three channels. 

Each channel thus may be marked as reserved and 
newly arriving guaranteed and handoff calls may not 
allocate or reserve such a marked channel. However, if a 



best effort call does not find enough free channels it may 
temporarily use reserved channels, risking to be 
interrupted as soon as the reserving handoff call arrives at 
cell A. 

The investigated versions of DRP differ in how best 
effort calls are chosen next to be either degraded or 
interrupted. Also, different versions for taking away only 
one or all channels that can be spared (with names 
starting with "DRPA") exist. In the standard DRP version, 
all best effort calls are put into a linear list and newly 
arriving calls are added to the list end. At all times, a list 
pointer called cursor points at the next best effort call to 
be degraded or interrupted. In the degradation phase, 
DRP starts at the cursor and searches for calls that can 
spare channels without being interrupted. If a call is 
found, it is degraded by one channel and the cursor is set 
to the call's successor or the list start in case the list end 
was reached. If the list is run through once without 
finding a call being able to spare a channel, DRP first 
interrupts the call being pointed at by the cursor, then its 
successors. Note that this strategy slightly differs from the 
interruption strategy used in the analytical solution 
presented in Section 4.1. The reason for this is that 
additional information like the order in a list of calls can 
not be used in the analytical approach. 

In DRP_LT, the best effort calls are ordered according 
to their lifetime. When DRP_LT enters the degradation 
phase, it will first degrade the youngest call, then the 
second youngest and so on. Likewise, in the interrupt 
phase, first the youngest call will be interrupted, then the 
second youngest, and so on. This strategy is based on the 
assumption that interrupting a long-lasting call leads to 
higher customer dissatisfaction than interrupting a young 
one. Also, it is reasonable to assume that older calls are 
more likely to reach their call end sooner than younger 
calls.  

Finally, for the degradation phase, strategy DRP_RL 
orders the best effort calls according to the relative 
number of channels they can spare. If ba  denotes the 
number of currently allocated and bm  denotes the 
minimum number of channels of best effort call b , then 
the calls are ordered according to bbb mma /)( −  
descending.  

Table 2. Degradation strategies. 

Strategy Order 
Phase 1 

Taken away 
in Phase 1 

Order  
Phase 2 

DRP List 1 List 
DRPA List All Spare List 
DRP_LT Lifetime 1 Lifetime 
DRPA_LT Lifetime All Spare Lifetime 
DRP_RL Spare 1 Minimum 
DRPA_RL Spare All Spare Minimum 

For the interrupt phase, this time the call with the 
maximum number of still allocated channels (=min) is 
chosen to be interrupted next. This is done in the hope 
that fewer calls will be interrupted, if first the ones with 
more still allocated channels are terminated. Table 2 
shows the investigated degradation strategies. 

 
6. Numerical Results 

 
6.1. Example 

 
In order to illustrate the aggregation method described 

in Section 4.2, its application is demonstrated on a simple 
example. Let the state space be 

{ }222|),,,( 21212121
2

2,2 ≤+++= bbggbbggS . 

The size of this state space is eight, the individual states 
being (0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,2,0), (0,1,0,0), 
(1,0,0,0), (1,0,1,0), and (2,0,0,0). Furthermore, the call 
arrival and departure rates are set as  

====
2121 bbgg λλλλ

2121 2
1

2
1

2
1

2
1

bbgg µµµµ === . 

 
Step 1: Solve 2

2S  
 
By following our approach, first a new Markov chain 

of four states { }0,,22|),( 212121
2
2 ≥≤+= ggggggS  is 

created. Using (4), the appropriate steady-state 
probabilities are computed to be 

17/4,17/4,17/8 1,00,10,0 === PPP  and 17/10,2 =P . 
 

Step 2: Aggregate into 2G  
 
In the next step, the Markov chain 2

2S  is collapsed into 

{ }0,2|)(2 ≥≤= gggG  and using (5), its steady-state 
probabilities are computed to be 17/4,17/8 10 == PP  
and 17/52 =P . Also, according to (6) the transition rates 
are calculated to be 

 

110 gT λ=→  
11

1

0,1
01 gg P

P
T µµ ==→  

121 gT λ=→  
11 5

22
2

0,2
12 gg P

P
T µµ ==→  

220 gT λ=→  
22 5

4

2

1,0
02 gg P

P
T µµ ==→  

 
 
 
 



Step 3: Solve 2
2GS  

 
Now the Markov chain 

{ }22|),,( 2121
2
2 ≤++= bbgbbgGS  defined in Table 3, 

with transition rates which are computed according to 
Table 1, is created and solved. 

Table 3.  Definition of 2
2GS . 

From  To Rate From To Rate 
(0,0,0) (0,1,0) 

1bλ  (0,2,0) (0,1,0) 
1

2 bµ  

(0,0,0) (0,0,1) 
2bλ  (0,2,0) (1,1,0) * ( ) ( )10 →T  

(0,0,0) (1,0,0) ( ) ( )10 →T  (0,2,0) (2,0,0) * ( ) ( )20 →T
(0,0,0) (2,0,0) ( ) ( )20 →T  (1,0,0) (0,0,0) ( ) ( )10 →T  
(0,1,0) (0,0,0) 

1bµ  (1,0,0) (1,1,0) 
1bλ  

(0,1,0) (0,2,0) 
1bλ  (1,0,0) (2,0,0) ( ) ( )21 →T  

(0,1,0) (1,1,0) ( ) ( )10 →T  (1,1,0) (0,1,0) ( ) ( )01 →T  
(0,1,0) (2,0,0) ( ) ( )20 →T  (1,1,0) (1,0,0) 

1bµ  

(0,0,1) (0,0,0) 
2bµ  (1,1,0) (2,0,0) * ( ) ( )21 →T

(0,0,1) (1,0,0) * ( ) ( )10 →T  (2,0,0) (0,0,0) ( ) ( )02 →T  
(0,0,1) (2,0,0) * ( ) ( )20 →T  (2,0,0) (1,0,0) ( ) ( )12 →T  
 
The transitions marked with a '*' involve interruption 

of one or more best effort calls. The computed steady-
state probabilities are 

 
7463/21600,0,0 =P  7463/13280,0,1 =P  

7463/5401,0,0 =P  7463/4280,1,1 =P  
7463/6960,1,0 =P  7463/21600,0,0 =P  
7463/1160,2,0 =P   

 
Step 4: Obtain 2

2,2S  
 
Using (8), the steady-state probabilities of the original 

Markov chain 2
2,2S  are computed to be 

 
7463/21600,0,0,0 =P  7463/13280,0,0,1 =P  

7463/5401,0,0,0 =P  7463/4280,1,0,1 =P  
7463/6960,1,0 =P  17/40,0,1,0 =P  

7463/1160,2,0,0 =P  17/10,0,0,2 =P  
 

It can easily be verified that this solution is the same that 
would be obtained by solving the original Markov chain 

2
2,2S  directly. 

6.2. Case Study 
 
In this Section results from using the analytical 

approach are compared to results obtained by simulation 
using the simulator CECALL. The effect of varying the 
traffic load and available channels is considered. For 
obtaining the simulation results, for each parameter set, 
ten simulation run replications were carried out in order 
to additionally compute 95% confidence intervals for all 
results. Each replication ran over at least 200,000 virtual 
seconds. The lengths of the 95% confidence intervals 
were at the order of magnitude of 1-5% of the obtained 
means.  

Figures 6 to 9 compare the analytical results with the 
simulation results. Here, the arrival rate λ  is divided 
equally between the guaranteed/handoff and best effort 
calls. Within each call class, two call types exist, one 
using one channel, the other one using two. Thus, 

.4/
2121 bbgg λλλλλ ====  Also, the holding time h  is 

the same for all call types. 
Generally, it can be seen that the results concerning 

only guaranteed/handoff calls are exactly the same for the 
analytical approach as well as for simulation. Results, 
where best effort calls are also reflected, show a small 
deviation due to the fact that the degradation strategies 
vary slightly between the analytical model and strategy 
DRP used by CECALL. 
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Figure 6. Probability for a guaranteed/handoff call 
being blocked. Analytical results are represented by a 
fat line, simulation results by a thin line. In this case, 
no difference between them can be observed. 

The probability for guaranteed/handoff call blocking is 
shown in Figure 6. It can be observed that as λ  increases, 
more and more guaranteed/handoff calls will be blocked. 
Also, the effect of having more channels can be seen. As 
the load increases, the advantage of having more channels 
is nullified. The curves for 50=h  will show the same 
behavior for higher values of λ  (not shown here). 
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Figure 7. Probability for a best effort call being 
blocked. Analytical results are represented by a fat 
line, simulation results by a thin line. 

Figure 7 shows the probabilities for best effort calls 
being blocked. The observed behavior is similar to that in 
Figure 6, however in this case the blocking probabilities 
are much higher because guaranteed/handoff calls enjoy 
priority over best effort calls. 
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Figure 8. Probability for a best effort call being 
interrupted. Analytical results are represented by a fat 
line, simulation results by a thin line. 

Figure 8 shows the probabilities for best effort calls 
being interrupted. This is the ratio of interrupted best 
effort calls to the total number of admitted (not blocked) 
best effort calls. At high load, the advantage of having 
more channels is quickly nullified. At lower load, having 
more channels offers a significant advantage for best 
effort calls.  

Figure 9 shows the probability that all channels are 
used (P[N]) and that all channels are used by 
guaranteed/handoff calls only (P[N,0]). If all call types 
used one channel each, the difference of these curves, 
denoting the fact that all channels are used, but some are 
used by best effort calls, would represent the probability 
for best effort calls being interrupted. It can be seen that, 

contradicting the expected behavior that this probability 
should increase monotonically with the load, the reverse 
is the case and for higher load, it drops monotonically. 
This can be explained by the fact that at high loads, less  
best effort calls will be admitted and even lesser will be 
interrupted. 

This observation is important to understand the 
following simulation results obtained for a different 
scenario. Here, 400,250 == hN and the handoff 
activation time is 50 [11]. Furthermore, guaranteed/ 
handoff calls may use up to three and best effort calls up 
to eight channels. Figure 10 shows how the mean number 
of degradations occurring for each admitted best effort 
call depends on the used degradation strategy. Again, this 
number first rises but will continuously decrease for 
higher loads. 
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Figure 9. Probability of all channels being occupied 
(P[N]), probability that all channels are occupied by 
guaranteed/handoff calls only (P[N,0]). 
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Figure 10. Number of degradations of best effort calls 
per admitted best effort call, caused by arriving 
guaranteed/handoff calls for different degradation 
strategies. 

 



7. Conclusion 
 
In this paper a new exact aggregation strategy for 

multi-dimensional Markov chains representing the 
channel allocation in cellular networks for multi-class 
traffic has been presented. Although the Markov chains 
representing the original state space are not exactly (but 
only ordinarily) lumpable, rendering the use of traditional 
aggregation schemes approximate only, this strategy will 
obtain exact results by a different aggregation approach. 

The approach exploits the successive domination 
property of multi-class traffic in cellular networks, as 
introduced in [11]. Using this property, the analysis of 
many traffic classes can be reduced to the successive 
analysis of individual classes. This way the state spaces 
of the analyzed Markov chains (and therefore the sizes of 
the systems of linear equations to be solved) are 
drastically reduced. Also, various types of intermediate 
results can be derived with even lesser effort. This 
procedure thus enables the analytical evaluation of large 
sized multi-class cellular networks which were previously 
analytically intractable. 

The presented results have been verified by simulation 
with the simulation tool CECALL. By using an analytical 
model, the interpretation of obscure simulation results 
became possible and hence similar techniques can be 
applied in other cases. 
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