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Abstract— Designing and planning networks is often done
by simulating the influence of various traffic types. This si-
mulation approach depends on reliable and realistic traffic
models that are capable of covering first- and second-order
statistics of the observed network traffic.

In this report, an overview over state-of-the-art models
for the simulation of network traffic will be given.
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I. Introduction

Computer and telecommunications networks have beco-
me the basis of our economic and scientific infrastructure.
Though network speed is growing faster and faster, sen-
ding data from one computer or terminal to the other is
still being regarded as a bottleneck. Thus, when installing
or upgrading large networks, thorough planning is of ut-
most importance. Planning the capacity of networks can
be done by using analytical means, or by using simulation.
Analytical models often impose restrictions to the mode-
led traffic that are not met in reality. On the other hand,
when simulating network traffic, no such restrictions are
necessary.

The aim of this report is to give an overview over the
state of the art models for simulating network traffic.

II. Modeling Network Traffic

When generating artificial network traffic, streams of re-
quests can occur on several different levels of description.
Such a stream S of request in essence is characterized by a
sequence of observations

. . . , X (tn−1) , X (tn) , X (tn+1) , . . .

at time points

. . . , tn−1, tn, tn+1, . . .

These observations now can describe, for instance, inter-
arrival times between successive user commands at the user
behavior level or the inter-arrival times or sizes of data
packets at the application or network level. Usually, the
X (ti) are modeled by a family of random variables with
known probability distribution function and time index t.
If the set of possible values (the state space) is finite or
countable, then the process is called discrete-state process,
and a continuous-state process otherwise. The time index
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t may be finite or countable, yielding a discrete-time pro-
cess S = {Xn}∞n=0 or may take any value in a set of fi-
nite or infinite intervals, yielding a continuous-time pro-
cess S = {Xt}∞t=0. If the process describes the arrival of
single discrete entities (packets, cells, commands,...), it is
called point process , consisting of a sequence of arrival in-
stants T0 = 0, T1, . . . , Tn, . . . measured from the origin 0.
An alternative description is given by counting processes
{N (t)}∞t=0, a continuous-time, non-negative integer valued
stochastic process, where N (t) = max {n : Tn ≤ t} is the
number of (traffic) arrivals in the interval (0, t]. Yet another
description of point processes is given by inter-arrival time
processes {An}∞n=1, where An = Tn − Tn−1 is the length
of the time interval separating the n-th arrival from the
previous one. The equivalence of these descriptions follows
from the fact that Tn =

∑n
k=1 Ak, and from the equality

of events ([1])

{N (t) = n} = {Tn ≤ t < Tn+1} =

=
{∑n

k=1 Ak ≤ t <
∑n+1

k=1 Ak

}
.

III. Renewal Models

In a renewal process, the X (t) are independent, identi-
cally distributed, but their distribution function is allowed
to be general. Being independent means that the observa-
tion at time t does not depend on any observation in the
past or future, thus the auto-correlation function for all
lags k �= 0 is equal to zero.

A. Poisson Processes

A Poisson process describes the arrival of observations
at certain points in time. The n-th inter-arrival time An is
described by an exponential distribution

P {An ≤ τ} = 1 − e−λτ

with mean arrival rate (mean number of arrivals per time
unit) λ. The number of arrivals within an interval of length
τ is described by a counting process satisfying

P {N (τ) = n} =
(λτ)n e−λτ

n!
.

Creating a Poisson model means identifying the correct
mean arrival rate λ.

B. Bernoulli Processes

Bernoulli processes are the discrete-time analog of Pois-
son processes. Arrivals can only take place at some time
slot k. The probability of an arrival in such time slot is p,
independent of others. The number of arrivals for slot k is
binomially distributed

P {Nk = n} =
(

k
n

)
pn (1 − p)k−n

.

The number of time-slots in between two arrivals is geome-
trically distributed with parameter p

P {An = j} = p (1 − p)j ,

j being a non-negative integer.
Creating Bernoulli processes means estimating the cor-

rect arrival probability p.

C. Possible Applications

Renewal processes can be used to model arrivals, which
are strictly independent from each other:

• The arrival of users to some company/computer faci-
lity.

• The arrival of network traffic packets, if the observed
network traffic shows no auto-correlation.

• A stream of commands issued to an application, if no
interdependencies on past results are observed.

In contradiction to the independence assumption, the ob-
served traffic is often highly correlated ([2]). Assuming un-
correlated traffic might result in unrealistic models ([3]).

IV. Markov Models

A first step to describe dependencies between the X (t)
is given by Markov processes. A Markov process with dis-
crete state space is called Markov chain ([4]). A set of ran-
dom variables {Xn} is called discrete-time Markov chain,
if the probability that the next observed value (state) will
be xn+1 = j depends only on the current state xn = i
and is given by pij . The dependency thus reaches back one
unit in time and is also independent of the time, the pro-
cess has spent in its current state (memoryless property).
In the discrete-time case, the time spent in a particular
state must therefore be geometrically distributed. For a
continuous-time Markov chain, the state changes can oc-
cur at any time t and the memoryless property demands
that the time spent in a particular state i is distributed ex-
ponentially with parameter λi (depending on the current
state i).

Creating Markov Chains

At first, the set of possible states must be defined. In the
discrete-time case, the transition probability matrix will
then define the pij .

Possible Applications

Markov processes can be used to model processes, whe-
re the observations depend on only the previous observed
value:

• User behavior: The next action is determined by the
previous action plus maybe some return value (success,
failure, ...)

• System/Network state change/failure
• Network traffic, if the observed traffic shows no or little

auto-correlation.
If network traffic is to be generated by a continuous-time
Markov chain, each transition from one state to the other
(or possibly back to the same state) might represent an
entity arrival ([1]). If traffic is generated with discrete time
Markov chains, each state i can correspond to i idle slots
separating successive slots, and is the probability of a j-
slot separation, given that the previous one was an i-slot
separation.
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In [5], a Markov chain approach is taken to model the
length of Groups Of Pictures (GOPs) in an MPEG-1 enco-
ded video. The GOP length is split into 2 time series, one
being the original sequence and one being smoothened by a
moving average filter of length W . Both time series are then
quantized into M and N steps, yielding two discrete state
time series. Combining these two chains into one yields a
discrete time discrete state Markov chain with associated
probability transition matrix.

A. Markov Modulated Traffic models

In Markov-modulated models an explicit notion of state
is introduced into the description of a traffic stream. An
auxiliary Markov process is evolving in time and its current
state controls the probability law of the traffic mechanism.

B. Markov Modulated Poisson Processes

In this scheme, the current state k of a superimposed
Markov chain defines the currently used arrival rate λk of
the modulated Poisson process. Each state may be assigned
its own arrival rate λk

Creating MMPPs

Normally, the observed traffic (arrival rates) is quantized
into n states, each being assigned a state in the Markov
chain. Then, the appropriate Markov chain is constructed
to drive the process.

Possible Applications

This model is applicable, if the observed arrival rates
vary over time, yet, no significant correlation is measured.

C. Generalizations of Markov Processes

A further generalization of Markov processes leads to
• Phase-type renewal processes ([6]): The time until the

next entity arrival is given by the time, an underly-
ing continuous-time Markov chain needs to reach the
absorbing state.

• Markov renewal processes ([1]): The distribution yiel-
ding the time of the next state change of a Markov
chain is general and depends only on the current state.

• (Batch) Markovian Arrival Processes ([7],[8]): Similar
to phase-type renewal processes.

• Discrete-Time (Batch) Markovian Arrival Processes
([9]): The discrete-time version of MAPs.

V. Fluid Models

If the number of arriving entities grows very large, each
individual entity will add only negligible information to
the traffic stream, just like the molecules in a water pipe-
line. As an example, the number of ATM cells per time
unit might grow very large when sending high quality vi-
deo information. When simulating such streams, the time
granularity would be quite fine, and consequently simula-
tion of all ATM cell arrivals would consume vast amounts
of CPU time and main memory. A fluid simulation would
assume that the incoming fluid flow remains (roughly) con-
stant over much longer time periods. Traffic fluctuations

would be modeled by events signalling a change of flow
rate ([1],[10], [11]).

Possible Applications of Fluid Models are the following
:

• ATM cells from near constant sources.
• TCP/IP traffic, if large volumes of data are transfer-

red, and network conditions do no change.

VI. Linear Stochastic Models

The Markov property demands that the next observed
state of a process can only depend on the current one, sum-
ming the whole process history into the current state. Au-
toregressive models define the next random variable in the
sequence Xn as an explicit function of previous ones within
a time window stretching from present to past. The distri-
bution of the Xn is called marginal distribution, the auto-
correlation function ρ : N → R yields for each k ∈ N , cal-
led the lag, the correlation coefficient of Xn and Xn−k. Au-
toregressive models are suitable for modeling short-range
dependencies, but fail to model long-range dependencies
as often measured in VBR-coded video, web and Ethernet
traffic ([2]).

A discrete-time stochastic process {Xn}∞n=0 is cal-
led Gaussian process, if for any finite set of time
points {t1, t2, . . . , tn}, the corresponding random varia-
bles {Xti}n

i=1define a multivariate normal distribution. The
marginal distribution thus consists of a normal distributi-
on.

The class of linear stochastic models ([12]) has the form

Xn = a0 +
∞∑

r=1

(αrXn−r − βrεn−r) + εn, n > 0,

where the Xn are a family random variables, the αr and
βr are real constants, the εn are zero-mean, iid random
variables, called residuals or innovations, which are inde-
pendent of the Xn. The most popular classes of linear sto-
chastic models are called AR(p), MA(q), ARMA(p,q) and
ARIMA(p,d,q). The ARFIMA(p,d,q) models use a simi-
lar scheme, but are designed to yield fractal (self-similar)
output.

A. The DAR(p) Model

In [13], a special autoregressive process, called DAR(p)
(discrete autoregressive process of order p), is used to si-
mulate VBR traffic and to measure the effectiveness com-
pared to self-similar models. Let {εn} be a sequence of iid
random variables taking values in Z, the set of integers,
with distribution π. Let {Vn} be a sequence of Bernoulli
random variables with P {Vn = 1} = 1 − P {Vn = 0} =
ρ for 0 ≤ p < 1. For the DAR(p) process, ρ repres-
ents the first-lag autocorrelation. Let {An} be a sequence
of iid random variables taking values in {1, . . . , p} with
P {An = i} = ai ≥ 0, i = 1, 2, . . . , p and

∑p
i=1 ai = 1. Let

Sn = VnSn−An + (1 − Vn) εn for n ≥ 1, then the process
S = {Sn} is called DAR(p) process. This process has p
degrees of freedom and can match up to the first p auto-
correlations. It depends explicitly on the last p values. In
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[13], it is also claimed that instead of taking into account
all autocorrelations up to infinity, it is enough to take into
account only a finite number up to an index called CTS
(Critical Time Scale).

Creating Linear Stochastic Models

• First, the exact type of model must be identified, i.e.
whether it is AR(p), MA(q), ARMA(p,q) or ARI-
MA(p,d,q) ([12]).

• Then, the parameters p, q and d must be identified.
Usually, p and q are smaller than 2.

• Finally, the parameters αi and βj must be estimated
([12]). This can be done, for example, by using least-
squares approximation ([14]).

Possible Applications

Because of their simplicity, AR(p) models are particular-
ly well suited to model short-range dependencies:

• VBR coded video: Such videos produce a stream of
frames of similar length, which can be modeled by au-
toregressive type models, while scene changes, causing
a major burst, might be modeled by some modulating
mechanism such as a Markov chain. In [15], the mix-
ture of two AR(1) traffic models is used to generate
VBR coded video.

• Network traffic with rapidly decaying autocorrelation
function. Though linear stochastic models are mem-
bers of the class of Gaussian models, the observed mar-
ginal distributions often differ from perfect Gaussian
distributions by some skew.

VII. TES

Gaussian models assume Gaussian marginal distributi-
ons, yet real traffic measurements have revealed that this
is not necessarily the case. More specifically, the observed
marginal distributions often have heavier tails than Gaussi-
an random variables. TES models ([16]) capture both mar-
ginals and autocorrelations of empirical records. The me-
thod assumes that time series (such as traffic measurements
over time) are available. It aims to construct a model cap-
turing the empirical marginal distribution (by using histo-
grams), the leading autocorrelations up to a reasonable lag
and yielding output that resembles the observed records.
TES is based on the following principles:

1. The Inversion Method: Let F be any distribution
function and U ∼ Uniform (0, 1). Then the random
variable X ∼ F−1 (U) satisfies X ∼ F . The sequence
{Un} with uniform marginal distribution is thus trans-
formed into a sequence {Xn} with marginal distribu-
tion F . This principle can be expanded by using the
empirical histogram of observed values instead of F .

2. Modulo-1 Arithmetic: Let x be any real number,
then the floor operator �.	 is defined by �x	 =
max {n : n ≤ x ∧ n ∈ Z}. The modulo-1 operator 〈.〉
is defined for any real x by 〈x〉 = x − �x	.

3. Iterated Uniformity: Let U ∼ Uniform (0, 1) and let
V be any real random variable. Define W = 〈U + V 〉.
Then W ∼ Uniform (0, 1). Furthermore, let U0 ∼

Uniform (0, 1), and {Vn}∞n=1 be a sequence of iid
random variables with arbitrary marginal density fV ,
and independent of U0. The Vn are called innovations.
Then the recursive scheme Un = 〈Un−1 + Vn, n > 0〉
is marginally uniform on [0, 1]. Note, that the distri-
bution of the Vn is completely irrelevant!

4. Foreground/Background Schemes: TES sequences
consist of a background sequence {Un}∞n=0 of margi-
nally uniform distributed random variables construc-
ted as described in 3, by using appropriate innovations
Vn. The inversion method is then used to transform
this sequence into a sequence {Xn}∞n=0 by using the
empirically observed histogram.

Creating TES Processes

The inversion method needs the empirical histogram.
Unfortunately, the desired autocorrelation function cannot
be modeled directly, but has to be searched for manually
by using the TES workbench ([16]).

Possible Applications

TES models allow to include a variety of different au-
tocorrelation functions, from slowly decaying, alternating
in sign to oscillatory. Thus, TES models are well suited to
model VBR coded video, Ethernet traffic and web traffic.
In [17], a model for MPEG-1 traffic is given that splits the
observed MPEG-1 traffic into two traffic streams.:

1. Slow time scale traffic: MPEG-1 traffic consists of I, B
and P pictures. The used encoder in [17] produces a se-
quence of IBBPBBPBBPBB sequences, called Group
of Pictures (GOP). Over 8 such GOPs, the I, B and P
sizes are averaged independently. The slow time scale
traffic then consists of 8 IBBPBBPBBPBB sequences,
where all I, B and P pictures have the same value.

2. Fast time scale traffic: This is the difference of the
slow time scale traffic to the observed traffic.

The four random processes (I, B, P, fast time scale) then
were modeled by using TES processes.

VIII. Self-Similar Traffic Models

Empirical measurements of traffic have often shown the
property of self-similarity, at least, if the traffic is high. A
zero-mean, stationary time series X = {Xn}∞n=0 can be m-

aggregated to X(m) =
{
X

(m)
k

}∞

k=0
by summing the original

time series over non-overlapping blocks of size m. Then, X
is said to be H-self-similar if for all positive m, X(m) has
the same distribution as X , rescaled by m

Xn = m−H
nm∑

i=(n−1)m+1

Xi = m−H X(m)

for all m ∈ N . Self-similarity can be described by the Hurst
parameter H , for which 0.5 ≤ H ≤ 1 holds, H = 0.5
indicating no self-similarity and H = 1 indicating perfect
self-similarity. If the equality holds only for variances and
autocorrelation function, the process is called second order
self-similar. There are several methods for estimating H
from an empirical time series:
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Fig. 2. R/S statistic plot of Bellcore Star Wars file.

1. Variance-Time plot ([2],[18]): plots
var(X(m)/m)/var(X) against m on a log-log scale. A
straight line with slope (−β) greater than -1 indica-
tes self-similarity with H = 1 − β/2. Figure 1 shows
a Variance-Time plot of Mark Garrett’s Star Wars vi-
deo trace file ([19]) and a reference line f(x) = −x. In
this file, 12 I, B and P frames of the MPEG-1 encoded
Star Wars movie yield one Group Of Pictures (GOP),
the plot showing the Variance-Time plot for the GOP
time series. The estimated slope in this case is −0.495,
yielding a Hurst parameter H of 0.75 (ref. [24]).

2. R/S plot ([2],[1]): The rescaled range statistic R/S
grows like a power law with exponent H for self-similar
traffic. Figure 2 shows a R/S statistic plot of the same
vbr trace file ([19]) and the reference line f(x) = x).
The estimated slope in this case is H = 0.84 (ref. [24]).

3. Periodogram method ([2],[18]): The shape of the
power spectrum of a self-similar time series is a
straight line on a log-log plot with slope β−1 = 1−2H
close to the origin.

4. Whittle estimator: provides a confidence interval for
H ([2]). In [20], an S-PLUS program for the calculation
of the Whittle estimator is given. Before estimating,
however, an appropriate stochastic model has to be
chosen.

5. Correlogram plot: plotting the autocorrelation func-
tion ρ(k) against the lag k on a log-log-scale yields
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Fig. 3. Correlogram plot of Bellcore Star Wars file.

another estimate for H ([20]). For a self-similar time
series, such a plot will have a slope of 2H−2. In Figu-
re 3, this is done again for the Star Wars GOP series.
The slope is estimated to be −0.29, yielding H = 0.86.

6. Wavelet estimator ([21],[22]): In wavelet analysis the
signal x (t) is analyzed by using a set of orthogonal ba-
sis functions φm

l (t), called wavelet functions, yielding
the coefficients dm

j (ref. to 3.7.4). Estimating Ĥ (j1, j2)
for appropriate scalings j1 and j2 is done by plotting

log2

(
Γ̂
(
2−jv0

))
= log2

(
1
nj

∑
m

∣∣dm
j

∣∣2)
against j, and applying linear regression. Here, nj =
2−jn and v0 is an appropriately chosen reference fre-
quency. A confidence interval for H is given by

Ĥ − σ
Ĥ

zβ ≤ H ≤ Ĥ + σ
Ĥ

zβ ,

where zβ is the quantile of the standard Gaussian dis-
tribution and

σ2

Ĥ
= var Ĥ (j1, j2) =

= 2
nj1 ln2 2

1−2j

1−2−(J+1)(J2+4)+2−2J .

Self-similarity has strong influence on the resulting traffic
and has the following properties:

• Long range dependencies: The autocorrelation functi-
on decays like a power law rather than exponentially.

• Heavy tailed distributions (like Pareto distribution)
with infinite variance are observed. Extremely large
values are more likely. The tail of a distribution is
said to be heavy tailed, if it decays like a power law:
P {X > x} = 1 − F (x) = F̂ (x) ∼ x−α. There are se-
veral methods to estimate the tail index α from given
data:

1. Plotting F̂ (x) on log-log-axes ([23]): Plotted in this
way, heavy-tailed distributions have the property

that d log F̂ (x)
d log x ∼ −α, for large x. Linear behavior

in the upper tail gives evidence of a heavy-tailed
distribution.
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2. The Hill-estimator ([23]): The Hill estimator gives an
estimate of α as a function of the k largest elements
in the data set:

Hk,n =

(
1
k

k−1∑
i=0

(
log X(n−i) − log X(n−k)

))−1

.

• Traffic bursts are observed. Such bursts in contrast to
Poisson arrival processes with the same mean arrival
rate will increase the mean waiting time and cell-loss
probability due to buffer overflow drastically. Traffic
bursts generally describe the ability of the process to
stay below or above the average for a long time, and
are strongly tied to large positive autocorrelations.
There are some popular indices for burstiness ([1]):

1. Peak-To-Mean ratio (PMR).
2. Coefficient of variation for inter-arrival times.
3. Hurst parameter (according to self-similarity) H .
4. Poisson traffic comparison (PTC).
5. Infinite server effect (ISE).
6. Index of dispersion for intervals (IDI).
7. Index of dispersion for counts (IDC).
8. The peakedness functional .

Self-similar traffic has been observed in Ethernet ([2])
and ATM traffic, Telnet and FTP traffic ([3]), web traffic
([18]) and VBR-video traffic ([24]). The following sections
will show some self-similar stochastic processes.

A. Fractional Brownian Motion

The zero mean Gaussian process BH (t) with Hurst pa-
rameter H is defined by

1. E [BH (t)] = 0.
2. BH (0) = 0.
3. BH (t + δ) − BH (t) is normally distributed

N
(
0, σ |δ|H

)
.

4. BH (t) has independent increments.
5. E [BH (t)BH (s)] = σ2/2

(
|t|2H + |s|2H − |t − s|2H

)
.

BH (t) is exactly self-similar, perfectly determined by H .
In [25], FBm is defined to characterize the number of

arrivals in the interval (0, t):

Nt = mt +
√

amZt,

where m denotes the mean of the process, a is the coefficient
of variation var [T ] /E [T ], and Zt is the normalized FBm
with Hurst parameter H .

Creating FBm traffic

Fractional Brownian Motion (FBm) ([26]) can be crea-
ted, for example, by the Random Midpoint Displacement
(RMD) method ([27])]:

1. Start with two end-points
2. Add one point in the middle of these two points, and

displace it with a random term (which depends on H).
3. Add points between all existing points and displace

them with random terms, until the desired number of
points has been generated.

In [28],[29], FBm is created by using wavelets.

Possible Applications

FBm can be used to model the sum or integral of self-
similar traffic (as observed in network buffers, file sizes of
audio/video streams, ... ). Its increments/derivative can
yield the self-similar fractional Gaussian Noise.

B. Fractional Gaussian Noise

The increments of FBm are known as Fractional Gaussi-
an noise (FGn) ([26]) and form a stationary process GH (t)
with the following properties:

1. GH (t) = 1
δ (BH (t + δ) − BH (t)).

2. GH (t) is normally distributed N
(
0, σ |δ|H−1

)
.

3. E [GH (t + τ) GH (t)] = σ2H (2H − 1) |τ |2H−2 for
τ � δ.

Discrete time FGn also has the following autocorrelation
function ([20],[1]):

ρX (k) =
1
2

(
|k + 1|2H − 2 |k|2H + |k − 1|2H

)
, k ≥ 1.

It can be necessary to truncate the FGn series, as negative
values are possible.

Creating FGn traffic

In [30], an algorithm is given to efficiently create estima-
ted discrete-time FGn. The Algorithm first generates an
estimate of the power series f (λ, H) of the desired traf-
fic stream at the discrete frequencies λj = 2πj/n, j =
1, . . . , n/2. Here, only the Hurst parameter H is necessary
(for estimation see above). After some transformations, a
sequence of n complex numbers is obtained, which is trans-
formed back via the inverse Fourier transformation to ob-
tain a sequence {xk}n

k=1. An instance of the algorithm is
explicitly stated, programmed in the statistics language S.

In [20], an S-PLUS program creating FGn is given. Here,
the series is generated by using the according covariances
up to lag n and applying inverse Fourier transformation.

In [31], an algorithm initially proposed in [32] is briefly
described.

Possible Applications

FGn are exactly second-order self-similar and are thus
good candidates in modeling self-similar traffic:

• Ethernet ([2])
• ATM
• VBR coded video
• Web traffic, cache
• Telnet, FTP

C. ARFIMA

Fractional ARIMA models (ARFIMA or FARIMA)
([2],[20]) are built on classical ARIMA models. {Xn}∞n=0

is called an ARFIMA(p,d,q) process, if
{�dXn

}∞
n=0

is an
ARMA(p,q) process for some non-integer d > 0. B is the
Backshift-operator B (Xn) = Xn−1 and �d can be repre-
sented by

�d = (1 − B)d =
∞∑

u=0

πuBu
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with π0 = 0 and

πu =
Γ (u − d)

Γ (u + 1)Γ (−d)
=

∞∏
k=1

k − 1 − d

k
, u = 1, 2, . . .

Note that using the gamma function Γ is the natural ge-
neralization for d being an integer, because in that case,
(1 − B)d is a finite sum and the coefficients πu are binomi-
al coefficients.

ARFIMA processes are asymptotically self-similar, if 0 <
d < 0.5, with Hurst parameter H = d + 0.5. For large lags,
the correlations of an ARFIMA(p,d,q) process are similar
to those of an ARFIMA(0,d,0) with the same d.

Creating ARFIMA models

The fractional differentiating parameter d can be esti-
mated from a previous estimate of the Hurst parameter H
by using the above equation. After this, the observed time
series must be fractionally differenced to yield a new time
series {

Yn = (1 − B)d
Xn

}∞

n=0
.

For the new time series, an appropriate ARMA(p,q) model
is then created ([12]).

In [24], an algorithm is given for the creation of ARFI-
MA(0,d,0) processes with arbitrary marginal distributions.
The algorithm, though, is of complexity and required 10
hours of CPU time for generating 171,000 points on an
1994 state of the art workstation.

In [20], an S-PLUS program for generating ARFI-
MA(0,d,0) series is given.

Possible Applications

ARFIMA models are similar to FGn, yet they are ve-
ry flexible due to the natural correspondence to ARI-
MA(p,d,q) models and to their higher number of parame-
ters.

In [24], VBR coded video traffic is modeled with ARFI-
MA models.

D. Wavelets

The above described stochastic models try to capture
short- and long-term dependencies as observed in VBR vi-
deo or Ethernet traffic. Wavelets now provide a means of
transforming the original self-similar process into a new
process with much less self-similar behavior. For this new
process, simpler models can be applied. Traffic is then ge-
nerated first in the wavelet domain, and then transformed
back into the time domain by applying the inverse wavelet
transformation ([14],[28],[29]).

Like in the Fourier transform, the observed values
{X (t)}2K

t=0(for some integer K) of an equally spaced,
discrete-time process are analyzed according to a complete
orthonormal basis of the Hilbert space L2 (R) of all squared
integrable functions ([33]). The members φm

j of this ortho-
normal basis are derived from a special function φ (t), the

mother wavelet, by translation in the time domain, and
scaling in the frequency domain ([14]):

φm
j (t) = 2−j/2φ

(
2−jt − m

)
.

Here, the positive integer m denotes the translation index,
while the positive integer j denotes the scaling index. The
task of wavelet transformation is to find wavelet coefficients
dm

j such that

x (t) =
K∑

j=0

2K−j−1∑
m=0

dm
j φm

j (t) + φ0

holds for 0 ≤ t < 2K . This is called the inverse wavelet
transform. The wavelet coefficients are given by

dm
j =

2K−1∑
t=0

x (t)φm
j (t) .

There are several popular mother wavelets. One, for exam-
ple, is the Haar wavelet

φ (t) =


1, if 0 ≤ t < 1/2
−1, if 1/2 ≤ t < 1
0, otherwise

.

The corresponding Haar wavelets φm
j (t) are scaled and shif-

ted versions of φ (t). For Haar wavelets, the corresponding
wavelet coefficients are given by

dm
j = 2−j/2

(m+0.5)2j−1∑
t=m2j

x (t) −
(m+1)2j−1∑

t=(m+0.5)2j

x (t)

 .

Though the wavelet coefficients have two indices, they can
be transformed into a discrete-time process {ds} by using
a triangular scheme:

2 3

4 5 6 7

1

m

j

Furthermore, if the observed process consists of random
variables, then the wavelet coefficients themselves are also
random variables. Due to the one-to-one correspondence
of the input process and wavelet coefficient process, the
statistical properties of x (t) are completely determined by
the statistical properties of the wavelet coefficients.

Experiments show that the auto-correlation function of
the new discrete-time process decays much faster (expo-
nentially) than that of the original (possibly self-similar)
process. Thus, simpler models like Gaussian type models
can be used to model this new process.
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Creating Network Traffic with Wavelets

Network traffic is generated in the following way ([14]):
1. Sample N = 2K observation values.
2. Compute the wavelet coefficients dm

j for this data.
3. Transform the indices to get the new process ds.
4. Model ds by a simple Gaussian type, stochastic pro-

cess (n-th order Markov).
5. Create 2K variates in the wavelet domain by using

this stochastic process.
6. Create the required x (t) in the time domain by app-

lying the inverse wavelet transform.
As the complexity of the wavelet transform and inverse
wavelet transform is of order O (N), where N = 2K is
the length of the time series, the complexity of the whole
algorithm is O (N). This makes the scheme very efficient!

Possible Applications

Wavelets are capable of capturing both short-range and
long-range dependencies ([14]). They are thus well suited
for modeling Ethernet, ATM, VBR, Telnet, FTP and web
traffic.

E. On/Off Processes

A large number of superimposed heavy tailed On/Off
processes ([34]) can yield self-similar traffic as well. An
On/Off process is either in state On or Off. We construct
a time series by observing the number of On-processes at
any time point. If On-times and Off-times are drawn from a
heavy tailed distribution like the Pareto distribution with
parameters α1 and α2, then the observed stochastic pro-
cess is a self-similar fractional Gaussian noise process with
H = (3 − min (α1, α2)).

Creating Traffic with On/Off Processes

On/Off processes are mapped to network traffic in the
following way:

• Each process corresponds to a workstation either being
silent (Off) or sending data at a constant rate (On).

and embedded URLs

URL1 OFF URL2 OFF OFF

User ThinktimeLoad Web Object

• Each process corresponds to a web user, On-times are
given by the web document transmission times and
Off-times are the time intervals between the trans-
missions ([35]). This model can be refined by mode-
ling active-Off times (time between the transmission
of two files belonging to the same HTML document)
and inactive-Off times (time between user actions) as
well. Transmission times of files are a function of their
length, thus the distribution of web file length has been
shown to be heavy-tailed. Zipf’s law connects this file
length to the number of times, a file has been trans-
mitted (file popularity).

In [36], mixtures of fractal On/Off processes, called fractal
point processes, are discussed.

Possible Applications

On/Off processes can be used to create network traffic
at the packet level, or streams of requests at a higher level,
like transferring files over the net ([35]).

F. Poisson-Zeta Process

A Poisson-Zeta process PZ [α, ρ] is a discrete time
On/Off process, where the number of bursts at each ti-
me point n is given by a Poisson distribution with mean α.
Each burst generates one cell (ATM) per time unit during
its duration, the duration l of each burst has independent
identical Zeta distributions {gh}∞h=1 (like a discrete version
of Pareto) with parameter 1 < ρ < 2. gh is the proba-
bility that the burst will last for h time units. In [37] it
has been demonstrated that this process is asymptotically
self-similar.

Possible Applications

In [37], an ATM switch has been fed with a Poisson-Zeta
process.

G. Deterministic Chaotic Maps

Deterministic chaotic maps are related to On/Off sources
([38]). Here, the driving sequence is derived from chaotic
processes having the SIC (Sensitive dependence on Initi-
al Conditions) property. In such processes, the observed
trajectories severely depend on the starting point. Chan-
ges of these starting points have exponential effects on the
observed trajectories. Traffic is produced by creating the
stochastic processes xn and yn:

xn+1 = f1 (xn) , yn = 0, if 0 < xn ≤ d
xn+1 = f2 (xn) , yn = 1, if d < xn < 1

for an appropriately chosen d and map functions f1 (x) and
f2 (x). If xn is above the threshold, then one traffic packet
is generated. In [38], two maps, the piecewise linear map

xn+1 =

{
xn

(1−λ) , 0 < xn ≤ (1 − λ)
xn−(1−λ)

λ , (1 − λ) < xn < 1

and the intermittency map

xn+1 =
{

ε + xn + cxm
n , 0 < xn ≤ d

xn−d
1−d , d < xn < 1

where

c =
1 − ε − d

dm

are then defined.

Possible Applications

In [38], Chaotic Maps are proposed as models for gene-
rating packet network traffic.
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H. Self-Similarity Through Aggregation

A more sophisticated process, yielding self-similar traffic
through aggregation, is given in [2] and [1]. Let {IK}∞k=0

be a sequence of iid integer-valued random variables with
asymptotic tail probabilities obeying the power law (for
example Pareto)

P {Ik ≥ t} ≈ t−αh (t) , as t → ∞,

where 1 < α < 2 and h (t) is a slowly varying function.
Let {Gk}∞k=0 be an iid sequence, independent of {Ik}, with
E [Gk] = 0 and E

[
G2

k

]
< ∞. Define the stationary se-

quence

Sk = S0 +
k∑

j=1

Ij , k ≥ 1,

with an appropriately chosen S0. Then define W =
{Wk}∞k=1:

Wk =
k∑

n=1

Gn1(Sn−1,Sn] (k) .

Construct M iid copies W (1), . . . , W (M) of W . Then the
process

W ∗ = {W ∗
k (M)}∞k=0 ,

given by

W ∗
k (M) =

{
0, k = 0∑k

n=1

∑M
m=1 W

(m)
n , k > 0

behaves like FBm, provided that k and M are large and
k � M .

Possible Applications

Any kind of network traffic showing self-similar behavior.

I. The M/G/∞ Model

In [3], an M/G/∞ model is stated, which is capa-
ble of constructing asymptotically self-similar traffic. Let
{Xt}t=0,1,2,... be the counting process denoting the num-
ber of customers in the M/G/∞ system at time t. If cu-
stomers have a service distribution function F , then the
autocorrelation function of Xt is

r (k) = ρ

∫ ∞

k

(1 − F (x)) dx,

where ρ is the rate of the Poisson process of customers
arriving at the system. If F is the Pareto distribution, then

r (k) = ρ

∫ ∞

k

(α

k

)β

dx =
ραβ

β − 1
k(1−β),

and thus the process is asymptotically self-similar.

Possible Applications

In [3], various aspects of Telnet and FTP traffic in
connection with M/G/∞ models are discussed.

J. Superimposing AR(1) Processes

In [2] it is stated that when aggregating many simple
AR(1) processes, where the AR(1) parameters are chosen
from a beta-distribution on [0, 1] with shape parameters p
and q, then the superposition process is asymptotically self-
similar. Also, the Hurst parameter H depends linearly on
the shape parameter q of the beta-distribution. Obviously,
creating the AR(1) processes can be done in parallel.

Possible Applications

In[15], the mixing of two AR(1) processes is used to ge-
nerate ATM traffic.

K. Self-Similar Markov Modulated

In [39], self-similarity is simulated by using a Markov mo-
dulated discrete-time, discrete-state process. The proposed
modulating Markov chain depends only on 3 parameters.

Possible Applications

VBR, Telnet, FTP, Ethernet, Web, etc. are possible ap-
plications.

L. The GBAR and GBMA Processes

The GBAR process [40] is a Gamma-Beta autoregressive
process. Let Zi−1 ∼ Gam (α, 1), Wi ∼ Gam ((1 − ρ)α, 1),
and Bi ∼ Beta (αρ, α (1 − ρ)) be independent, then

Zi = BiZi−1 + Wi

is also Gam (α, 1)-distributed. The autocorrelation functi-
on of this process is geometric. As is stated in [41], triangu-
lar shaped autocorrelation functions can be derived from
moving averages of Gamma processes. Any kind of auto-
correlation can be modeled by weighting Gamma processes
with Beta distributions, then applying the moving average
filter to it (GBMA process).

Possible Applications

In [41], the GBAR and GBMA models are used to mo-
del the sizes of MPEG frames. Other applications include
Ethernet traffic, Web, WAN, etc.

M. Spatial Renewal Processes

Spatial renewal processes ([17],[42]) consist of two back-
ground processes, the first being a point process T =
{T0 ≤ 0, Tn, n ≥ 1}, such that the inter-renewal times Tn−
Tn−1, n ≥ 1 are iid with distribution function FT (t). A
second process {Xn}∞n=0 consists of iid random variables
with the desired marginal distribution as observed. These
two processes together then yield the foreground process
Yt = Xn for Tn ≤ t < Tn+1. If the desired autocorrelation
function ρ (t) for {Yt} is either given empirically or known
analytically (for example, if we want to generate FGn, then
the autocorrelation function is known for discrete points
and must be extended to the set of real numbers), then we
just have to construct FT (t) over equation

1 − ρ (t) = µ−1

∫ t

0

(1 − Ft (u)) du, t ≥ 0,
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or equivalently

− d

dt
ρ (t) = µ−1 (1 − FT (t)) , ρ (0) = 1, t ≥ 0,

where

µ =
∫ ∞

0

(1 − FT (u)) du.

In order to yield valid distribution functions, the used auto-
correlation function must be a decreasing, concave-up func-
tion. The constructed foreground process {Yt} will then
have the desired marginal distribution and the required
autocorrelation function! In [42], the distribution function
for FGn is stated explicitly.

Possible Applications

In [17], SRP are used to model MPEG-1 encoded video
streams. Other possible applications include Ethernet and
ATM traffic, WAN and Web traffic.

N. Multifractal Traffic

In [43], the multifractal nature of WAN traffic is demon-
strated. In contrast to monofractal (self-similar) traffic,
where the local scaling behavior is constant, multifractal
traffic takes into account the changing local scaling beha-
vior over time. This local scaling behavior is measured as
the rate, at which the number of bytes/packets observed in
the interval [t0,t0 + δt] tends to zero as δt → 0. In [43], this
local scaling behavior is calculated by using wavelet trans-
forms. The multifractal property is then motivated by the
cascading nature of WAN traffic (each trace consists of ses-
sions, each session consists of traffic requests, each traffic
request consists of TCP connections, each TCP connection
consists of IP packets, ... ).

IX. Overview of Traffic Generators

In this section, an overview of the bibliography for mo-
deling and generating traffic of certain types is given. In
order to provide some starting point, in the papers below
either explicit models for the respective traffic types have
been proposed, or the authors themselves have proposed to
use their models for these types.

A strict distinction between these traffic types, howe-
ver, is not always feasible, as transporting multimedia traf-
fic will be a dominant factor in tomorrows networks, and,
for example, VBR encoded video will be transported over
ATM, Ethernet and subsequently as WAN traffic over the
Internet. Also, multimedia traffic will be an important part
of future web traffic. Thus, models for one type of traffic
are often applicable to all other traffic types as well.

A. VBR Video Traffic / MPEG

VBR encoded video traffic is by its very nature bursty
and shows strong correlations between successive frames si-
zes ([24]). Popular codecs include MPEG-1, MPEG-2 and
MPEG-4 for video encoding, and H.261 and more recent-
ly H.263 for video conferencing. These codecs use DCT

transformations to reduce spatial redundancy and predic-
tion and motion compensation to reduce temporal redun-
dancy. The video stream is sent in sequences of frames of
types I, P, B, and PB (two pictures coded as one frame).

Burstiness is introduced by sudden scene changes, shif-
ting the average frame sizes away from the mean. Inside
scenes, prediction and motion compensation keep frames
of the same type (I, P, B, PB ) from varying too heavily
in size. Thus, either frames of the same type or the sums
of the sizes of frames belonging to one Group of Picture
(GOP) show strong correlations.

• [44]: Geometric On/Off.
• [45]: Periodic Markov modulated batch Bernoulli.
• [5]: Markov chain.
• [41]: GBAR, GBMA.
• [24]: ARFIMA(0,d,0).
• [46]: Discrete AR, Markov chain, Scene changes.
• [47]: Markov chain.
• [31]: FGn, Arbitrary marginal distribution.
• [48]: TES.
• [17]: Multiple time scale TES, Spatial renewal proces-

ses.
• [49]: FBm, DAR (Markov), Markov chain.
• [50]: TES.
• [51]: Generalized TES.
• [52]: Leaky bucket, empirical envelopes.
• [53]: Markov modulated On/Off.
• [54]: TES.
• [30]: FGn.
• [55]: Markov chains.
• [13]: DAR(p).
• [56]: TES.
• [14]: Wavelets.
• [42]: Spatial renewal processes.

B. Ethernet Traffic

In [2] it has been demonstrated that Ethernet traffic is
bursty and highly self-similar. One explanation for this is
given by the theory of On/Off processes. If each worksta-
tion is regarded to be either in state On (sending data) or
Off (doing nothing), then the superposition of such On/Off
sources can yield asymptotically self-similar traffic ([34]).

• [21]: Wavelets.
• [38]: Chaotic Maps.
• [2]: FGn, ARFIMA(p,d,q), aggregation.
• [39]: self-similar Markov modulated.
• [36]: Fractal point processes.
• [14]: Wavelets.

C. ATM

ATM will be dominated by tomorrows audio and video
traffic. Thus, the models below are often similar to models
for VBR encoded video.

• [15]: Superimposing two AR(1) processes.
• [57]: On/Off sources.
• [58]: heavy-tailed Renewal.
• [37]: Poisson-Zeta (On/Off).
• [59]: On/Off sources.
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• [60]: FBm, mix of two AR(1), M/Pareto.
• [61]: On/Off sources.
• [62]: MMBP.

D. Wan, TCP, Telnet, FTP

Measurements of WAN traffic often include traffic gene-
rated by Telnet or FTP downloads ([63], [3]). Again, bursti-
ness and self-similarity is observed. In [43], this is explained
by the inherent hierarchical nature of WAN traffic.

• [8]: B-MAPs.
• [22]: Wavelets, M/G/∞.
• [43]: Multifractals
• [25]: Poisson, MMPP, AR(1), Weibull, Pareto, FBm.
• [63]: Inter-arrival times, autocorrelation function.
• [3]: Pareto, M/G/∞, Log-normal.
• [36]: Fractal point processes.

E. Web Traffic

Web based network traffic also shows self-similar behavi-
or. In [34] this is explained by the fact that the file transfers
can be seen as On/Off processes, where the On time, given
by the sizes of transferred files, is drawn from heavy-tailed
distributions. The aggregate of such traffic is then asymp-
totically self-similar.

• [35]: On/Off sources, Zipf’s Law.
• [34], [18]: On/Off sources, Zipf’s law.
• [64]: Poisson.
• [22]: Wavelets, M/G/∞.
• [65]: ARIMA(p,d,q).
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