
Simulating Load Balancing on Heterogeneous

Workstation Clusters?

Helmut Hlavacs1 and ChristophW. Ueberhuber2

1 Institute for Applied Computer Science and Information Systems, University of
Vienna

hlavacs@ani.univie.ac.at
2 Institute for Applied and Numerical Mathematics, Technical University of Vienna

christof@uranus.tuwien.ac.at

Abstract. A new system for simulating dynamic load balancing on het-
erogeneous workstation clusters is presented. Competing workload can
be modeled in various ways, from simple to sophisticated. Instead of
running real parallel workload, the program designer builds an applica-
tion model, which is then run on the simulation system. The simulator
provides standard UNIX load averages and can easily be adapted and
extended for special purposes.

1 Introduction

Heterogeneous workstation clusters are getting increasingly attractive for run-
ning parallel software. When running parallel programs on interactively used
workstations, program designers have to take care not only of balancing the
computational load of their program, but also of reacting to changes of the work-
stations' workload caused by other user programs. This redistribution of work
at runtime requires dynamic load balancing and has been studied extensively in
literature (Krommer, Ueberhuber [12], Shivaratri et al. [19], Hac, Jin [9], Bur-
dorf, Marti [4]). In principle, there are various ways of comparing di�erent load
balancing strategies with each other. All, though, have to model the occurring
workload in one way or the other.

Theoretical approaches include scalability analysis (Kumar, Gramar and
Vempaty [13]) and queuing analysis (Wang, Morris [22]). In both techniques,
workload is modeled by Poisson arrival processes in most cases.

Simulation of load balancing techniques may be performed directly by run-
ning benchmark programs on existing workstations (Arpaci, Dusseau, Vahdat [2])
or by using special simulation systems. Simulation systems might either use
traces of real user sessions (Zhou [23]) or may be based on Poisson processes as
well (Kunz [14]).

There are, however, various ways in modeling workstation workload. Among
them are, for instance, Poisson processes (Allen [1]) with constant arrival and de-
parture rates (Kunz [14]), Poisson processes with variable arrival rates during the

? This work was supported by the Austrian Science Fund (�Osterreichischer Fonds zur
F�orderung der wissenschaftlichen Forschung).

2 Hlavacs, Ueberhuber

day (Calzarossa, Serazzi [5] [7]), Markovian type models (Haring [10], Calzarossa,
Serazzi [6]) and probabilistic context free grammars (Rhagavan, Joseph [17]).

In this paper, a simulator based on MISS-PVM (Kvasnicka, Ueberhuber [15]
[16]) is presented, which is designed to simulate di�erent load balancing strategies
for parallel programs run on interactively used, heterogeneous workstation clus-
ters. Using this new simulation tool, the workload of workstations can be mod-
eled in various ways, including Poisson processes, user session trace �les and user
behavior graphs (UBGs). The application of the new simulator is demonstrated
by modeling the parallelization of the ion implantation module (Bohmayr, Bu-
renkov, Lorenz, Ryssel, Selberherr [3]) which is part of the technology CAD
system VISTA (Strasser, Pichler, Selberherr [20], Grasser et al. [8]).

2 The Workstation User Simulator

The Workstation User Simulator (WUS) is an add-on to the Machine Indepen-

dent Simulation System for PVM3 (MISS-PVM). As with real parallel program
runs, the simulated processes are started and use PVM3 (Sunderam et al. [21])
for communication. MISS-PVM, implemented as an independent layer between
the user program and PVM, provides a virtual time depending on the process
CPU usage, the speed of the interconnection network and the size of message
packets sent from one process to the other. In principle, the simulated user pro-
cesses can be started on any single or multi-processor computer.

When sending messages to other processes, MISS-PVM increases the virtual
time according to the recently consumed CPU time, information that is provided
by all standard UNIX systems. This timing information is then hooked onto the
message sent. The receiver uses this time information to increase its own virtual
time. The structure of the whole simulation system can be seen in Fig. 1.

competing
processes of
workstation
cluster

Generation of

of slave worker

MISS-PVM

Application model

PVM

WUS

Generation of computing time

Fig. 1. Structure of the simulation system.

When using WUS, the real parallel application has to be replaced by an appli-
cation model program, creating random CPU requests. These random requests,

Simulating Load Balancing on Heterogeneous Workstation Clusters 3

of course, must follow the observed statistical distribution of the real applica-
tion. The synthetically generated CPU requests (for instance, one request may
refer to T CPU seconds) are then passed to WUS, which puts the request into
its run queue and additionally produces competing processes due to the chosen
workload model. After the application model has consumed its requested CPU
time, it again takes over control and is free to communicate with other programs
via MISS-PVM or to perform the chosen load balancing strategy. The currently
implemented queuing discipline is processor sharing, i. e., all processes receive
the same amount of CPU time.

Additionally, load averages similar to the standard UNIX load averages are
available, as load balancing algorithms often rely on the exponentially smoothed
CPU queue length. Exponential smoothing in essence means trying to estimate
the level Q of a stationary process, for which observations : : : ; Xt�1; Xt; Xt+1 at
times : : : ; t� 1; t; t+ 1 are available (Schlittgen, Streitberg [18]):

Qt+1 = �Qt + (1� �)Xt+1:

Qt is the estimate for Q at time t. The smoothing constant � de�nes the weight
for the past observations used for the current estimate. If the smoothing is to
be done over the last N seconds, then � = N=(N + 1). Currently, load averages
over the last 5, 30, 60, 300 seconds (5 minutes), and 900 seconds (15 minutes)
are available in the simulation tool.

3 Using WUS

WUS consists of a set of C++ classes, designed to mimic a normal UNIX com-
puter (Fig. 2). The most important class is called Computer. It generates and
stores all other classes and interacts with the application model. The class User
and its derivatives produces competing workload on this virtual machine. Work-
load is produced by using trace �les of real user sessions, Poisson arrival processes
with �xed and variable arrival and departure rates, and user behavior graphs.

CPU request from
the application model

Rates

Computer

Window
Process

User

Constant UBGTracefile Rates
Variable

Fig. 2. Structure of the Workstation User Simulator (WUS).

4 Hlavacs, Ueberhuber

Designers of parallel programs wishing to use WUS to test load balancing
strategies �rst have to sample statistical data of the CPU requests of their real
parallel application. Using this sampling data, a statistical application model
then has to be created. An application model program frame may look like the
following example:

do communication or initialization

pComputer = new Computer(Workload model);

while(Loop) f
runtime = GetRandomRuntime();

pComputer->RunProcess(runtime);

loadavg = pComputer->LoadAverage(n);

do communication or load balancing

g
collect results

Initialization is done by creating an instance of the class Computer. The type
of workload model is passed to the Computer class, which in turn creates the
necessary User classes. Processor requests are passed to Computer by calling the
member function RunProcess(). Load averages then can be retrieved by calling
LoadAverage() and can be used to perform load balancing. Communication to
other processes is carried out by normal PVM3 calls (which are replaced by
MISS-PVM calls).

4 Simulating the VISTA Ion Implantation

VISTA (Strasser, Pichler, Selberherr [20], Grasser et al. [8]), developed at the
Institute for Microelectronics at the Technical University of Vienna, is a frame-
work for the design and simulation of process steps involved in semiconductor
production. VISTA includes an ion implantation program (Bohmayr et al. [3]),
which is based on a Monte Carlo simulator computing the endpoints of ions
shot into a substrate. The resulting ion density is needed later on to predict the
electrical behavior of the investigated semiconductor.

Monte Carlo ion implantation requires large amounts of computation time
and thus has been parallelized to run on the institute's workstation cluster. The
workstations of this cluster are not dedicated to ion implantation jobs but are
also used by interactive users, as well as by other parallelized programs, like
large compilation jobs. Currently, no dynamic load balancing is implemented,
causing the implantation program to run out of balance quite frequently. Fig. 3
shows the implantation process.

For the parallel version of the Monte Carlo ion implantation, currently un-
der development at the Institute for Microelectronics, the whole semiconductor
region is split into n parts (see Fig. 3). If ions leave their segment they are sent
to the owner of the neighboring segment. One important fact limits the paral-
lelization of the ion implantation. In the crystalline case, the penetrating ions

Simulating Load Balancing on Heterogeneous Workstation Clusters 5

Ion

Substrate

n

Ion density

Worker 1 WorkerWorker 2 ...

Fig. 3. Vista ion implantation.

change the properties of the substrate. After the implantation of at most 500
ions, the workers must synchronize.

In order to reect the heterogeneity of the VISTA workstation cluster, each
available workstation has been tested using the Whetstone oating-point bench-
mark. Additionally, a user process has logged the CPU and memory demands of
all processes run on the whole workstation cluster for two months, resulting in
over 500 trace �les.

The CPU demands per ion have been modeled by statistical distributions.
For the overall ion time, a 3-stage gamma distribution function G has been
�tted by using the non-linear minimization capabilities of the statistical package
R (Ihaka [11]). The task was to �nd the set of parameters minimizing

SE =
X
xj

(G(xj)� Sn(xj))
2;

i. e., the squared sum of di�erences between the observed cumulative distribution
function Sn and the model distribution function G. Di�erences are taken at the
jump points xj of the distribution function Sn.

Additionally, if ions are sent to a neighbor, the CPU time spent in their seg-
ment has been modeled for over 50 di�erent segment sizes. This is important, as
parts of segments will be shifted to neighbors in case of load balancing activities.
Each of these distributions consist of a 2-stage hyperexponential distribution with
distribution function

F (t) = �(1� e�t=�1) + (1� �)(1� e�t=�2):

Here, �tting has been done by using a mixture of the method of moments
(Allen [1]) and non-linear minimization. By computing the �rst two statistical
moments

E[X] = ��1 + (1� �)�2 � a

E[X2] = 2��21 + 2(1� �)�22 � b

6 Hlavacs, Ueberhuber

the distribution means �1 and �2 can be related to � by

�1 =
a� (1� �)�1

�
; �2 = a�

s
a2 �

2a2 � �b

2(1� �)
:

Thus, only � 2 [0; 1] has to be �tted to the data. Each distribution has been eval-
uated by the Kolmogorov-Smirnov goodness-of-�t test. Most have been accepted
with high probability, rejections at least show signi�cance at a one percent level.
Parameters for segments not being considered have been linearly interpolated.

5 Simulation Results

Simulation was carried out by starting ten processes, each using a trace �le
of a real workstation day. From the workstation cluster, two of the fastest ma-
chines (320 MWhetstones/second) and eight of the slowest machines (75 MWhet-
stones/second) were chosen. The data size describing the segment structure was
set to 50 MB (anything between a few MBs and 1 GB would have been possible).
The simulation start time was set to 4 pm, thus increasing the simulation time
accordingly. At 4 pm the master process sends load requests to all processes,
then chooses k workstations with the best performance/load ratio.

Fig. 4 shows the simulation results. Load balancing is carried out at each
synchronization point. The master receives load information of its workers and
starts the load balancing mechanism, in case the load imbalance exceeds some
threshold. Load balancing is carried out by shifting the segment limits and send-
ing the according segment data to other workers. The lower limit denotes the
case, where no competing processes are started, thus assigning the full compu-
tational power to the ion implantation calculations, i. e., the application model
under consideration.

6 Future Work

The workstation trace �les indicate large uctuations of workload during the day.
Especially the faster machines are more likely to get overloaded. Load balancing
algorithms to be yet developed must be able to predict the future workload, at
least to some degree, to avoid unnecessary work shifts.

Also, the simulator itself will be extended to accept not only application
models but real application programs as well. Additional features like other
queuing disciplines including the UNIX nice level will be provided.

7 Conclusion

In this paper a simulator designed especially for the development of load balanc-
ing algorithms on interactively used heterogeneous workstation clusters has been
introduced. In this simulator various ways of describing workstation workload

Simulating Load Balancing on Heterogeneous Workstation Clusters 7

Lower limit
With LB

Without LB

Number of workers

S
ec
o
n
d
s

10987654321

8000

6000

4000

2000

0

Fig. 4. E�ect of load balancing (LB).

can be used, reaching from simple �xed arrival/departure rates up to sophisti-
cated user behavior graphs. The newly developed simulation system will be an
important tool for evaluating load balancing algorithms in various applications,
amongst them the Monte Carlo ion implantation module of VISTA.

Acknowledgments

We would like to thank Siegfried Selberherr, Erasmus Langer, Mustafa Radi
and Andreas H�ossinger (Institute for Microelectronics, Technical University of
Vienna) for their cooperation.

Additionally, we would like to acknowledge the �nancial support of the Aus-
trian Science Fund FWF.

References

1. Allen A.O., Probability, Statistics and Queuing Theory, Academic Press, Orlando,
1990.

2. Arpaci R.H., Dusseau A.C., Vahdat A.M., The Interaction of Parallel and Sequen-
tial Workload on a Network of Workstations, Performance Evaluation Review 23-1
(1995), pp. 267-278.

3. Bohmayr W., Burenkov A., Lorenz J., Ryssel H., Selberherr S.,Monte Carlo Sim-

ulation of Silicon Amorphization During Ion Implantation, Proceedings SISPAD
96 Conf., (2.-4. September 1996, Tokyo), pp. 17-18.

4. Burdorf C., Marti J., Load Balancing Strategies for Time Warp on Multi-User

Workstations, The Computer Journal 36-2 (1993), pp. 168-176.
5. Calzarossa M., Serazzi G., A Characterization of the Variation in Time of Work-

load Arrival Patterns, IEEE Transactions on Computers C-34-2 (1985), pp. 156-
162.

8 Hlavacs, Ueberhuber

6. Calzarossa M., Serazzi G., System Performance with User Behavior Graphs, Per-
formance Evaluation 11 (1990), pp. 155-164.

7. Calzarossa M., Serazzi G., Workload Characterization: A Survey, Proceedings of
the IEEE 81-8 (1993), pp. 1136-1150.

8. Grasser T. et al, VISTA Status Report, Technical Report AURORA TR1997-16,
Technical University of Vienna (1997).

9. Hac A., Jin H., Dynamic Load Balancing in a Distributed System Using a Sender

Initiated Algorithm, J. Systems Software 11 (1990), pp. 79-94.
10. Haring G., On stochastic models of interactive workloads", in PERFORMANCE

'83 (Agrawala A.K., Tripathi S.K. eds), North Holland, Amsterdam, 1983, pp.
345-361.

11. Ihaka R., R: Past and Future History, http://www.stat.math.ethz.ch/CRAN/
12. Krommer A., Ueberhuber C., Dynamic Load Balancing|An Overview, Technical

Report ACPC/TR 92-2, Austrian Center for Parallel Computation, Vienna, 1992.
13. Kumar V., Grama A.Y., Vempaty N.R., Scalable Load Balancing Techniques for

Parallel Computers, Journal of Parallel and Distributed Computing 22 (1994),
pp. 60-79.

14. Kunz T., The Inuence of Di�erent Workload Descriptions on a Heuristic Load

Balancing Scheme, IEEE Transactions on Software Engineering 17-7 (1991), pp.
725-730.

15. Kvasnicka D., Ueberhuber C.W., Simulating Architecture Adaptive Algorithms

with MISS-PVM, Technical Report AURORA TR1997-16, Technical University
of Vienna (1997).

16. Kvasnicka D., Ueberhuber C.W., Developing Architecture Adaptive Algorithms

using Simulation with MISS-PVM for Performance Prediction, Conference Pro-
ceedings of the 1997 ACM/SIGARCH International Conference on Supercomput-
ing, Vienna, Austria, July 7-11, 1997, pp. 333-339.

17. Raghavan S.V., Joseph P.J., Workload Models for Multiwindow Distributed Envi-

ronments, in Quantitative Evaluation of Computing and Communication Systems
(Beilner H., Bause F., eds), Springer Heidelberg, 1995.

18. Schlittgen R., Streitberg B., Zeitreihenanalyse, R. Oldenbourg Verlag Muenchen,
1995.

19. Shivaratri N.G., Krueger P., Singhal Mukesh, Load Distributing for Locally Dis-

tributed Systems, Computer 12 (1994), pp. 33-44.
20. Strasser R., Pichler Ch., Selberherr S., VISTA|A Framework for Technology

CAD Purposes, Proceedings European Simulation Symposium, (19.-22. October
1997, Passau), pp. 445-449.

21. Sunderam V.S., Geist G.A., Dongarra J., Manchek R., The PVM concurrent

computing system: Evolution, experiences and trends, Parallel Computing 20-4
(1994), pp. 531-545.

22. Wang Yung-Terng, Morris R.J.T, Load Sharing in Distributed Systems, IEEE
Transactions on Computers C-34-3 (1985), pp. 204-217.

23. Zhou S., A Trace-Driven Simulation Study of Dynamic Load Balancing, Technical
Report UCB/CSD 87/305 (1986).

