
CLUE

A Tool for Cluster Evaluation

HelmutHlavacs� Dieter F.Kvasnickay ChristophW.Ueberhuberz

Abstract

This paper describes the simulation tool CLUE which makes possible the
highly accurate performance assessment and performance prediction of
clusters of symmetric multiprocessors (SMPs). Using CLUE, reliable in-
formation can be obtained to reach the optimum decision on hardware
con�gurations (processing elements and communication networks) before
actually purchasing this hardware. Thus, hardware can be adapted to indi-
vidual software features, reversing the currently used techniques of adapt-
ing high-performance software to hardware features (as used, for instance,
in FFTW, Phipac, or the Atlas tool).

Keywords: cluster computing, high-performance computing, simulation, paral-
lel computing, execution driven simulation.

1 Introduction

In the last few years high-performance hardware has changed dramatically. Until
quite recently, shared memory parallel vector processor (PVP) computers and
distributed massively parallel processing (MPP) machines dominated the �eld
of supercomputing. Nowadays high-performance computing has turned towards
clusters of shared memory symmetric multiprocessors (SMPs). Most of these clus-
ters are built using custom processors, as well as custom interconnection devices
and memory. Accordingly, clusters of SMPs appear in a multitude of di�erent
con�gurations, ranging from tera
ops machines to small clusters, comprising sev-
eral PCs or workstations. The large number of possible con�gurations makes it
diÆcult to decide which particular structure is suitable to solve a particular class

�Institute for Computer Science and Business Informatics, University of Vienna.
yInstitute for Physical and Theoretical Chemistry, University of Technology, Vienna.
zInstitute for Applied and Numerical Mathematics, University of Technology, Vienna.

The work described in this paper was supported by the Special Research Program SFB

F011 \AURORA" of the Austrian Science Fund.

1



2

of problems under certain performance requirements, and of course under given
�nancial constraints. To aid this process of evaluating computer clusters the sim-
ulation and assessment tool CLUE (cluster evaluator) has been developed. This
paper describes CLUE and gives some results gathered in numerical experiments.

Synopsis. Section 1.1 describes current PC clusters, used in this paper as ex-
amples of SMPs. Sections 1.2 and 1.3 give a description of the speci�c clusters
and algorithms, used in the experimental sections of this paper. Section 2 de-
scribes CLUE, the machine independent simulation system for clusters of SMPs.
Section 3 shows the experimental scenarios and their results. Finally, Section 4
gives the conclusions of this work and provides an outlook on future work.

1.1 PC Clusters

As the performance of commodity computer and network hardware increases, and
prices decrease, it becomes more and more attractive to build parallel computer
systems from o�-the-shelf components. The current price / performance ratio of
a PC cluster is often ten times better than that of traditional supercomputers.
PC clusters scale reasonably well, are easy to construct and only the hardware
has to be paid for as most of the software is free. Meanwhile several entries of
the top 500 supercomputer list1 are clusters of o�-the-shelf SMPs.2

Usually PC clusters do not contain any proprietary hardware components and
thus are trivially reproducible. Commodity software like the Linux operating
system, PVM (Geist et al. [6]) and MPI (Gropp et al. [7]) are used for developing
parallel programs.

A server node controls the whole cluster and serves �les to the client nodes.
These nodes can be thought of as a (multi) CPU plus a memory package which
can be plugged into the cluster, just like a CPU or memory module can be
plugged into a motherboard. PC clusters used for high-performance computing
are often referred to as Beowulf clusters.3 Typical con�gurations are, for example,
a compound of several computers connected via Fast Ethernet or faster networks
like Gigabit Ethernet, Myrinet or SCI (Scalable Coherent Interface).

As a form of parallel computers PC clusters fall somewhere in between MPPs
(Massively Parallel Processors) and NOWs (Networks of Workstations). They
pro�t from developments in both architectures. MPPs are usually larger than
PC clusters and use faster networks. Typical problems when programming MPPs
are load and data distribution, granularity, and minimizing the communication
overhead. Programs, which are not too �ne grained, can be ported from MPPs

1http://www.netlib.org/benchmark/top500.html
2http://www.cs.sandia.gov/cplant/

http://cnls.lanl.gov/avalon/

http://wwwwissrech.iam.uni-bonn.de/research/projects/parnass2/
3http://www.beowulf.org



1 Introduction 3

to PC clusters easily and achieve there a satisfactory performance. When pro-
gramming NOWs, in most cases algorithms are designed to utilize unused cycles
of powerful workstations. These algorithms have to be tolerant of load variations
and have to use dynamic load balancing. All programs running on NOWs run at
least as good on dedicated PC clusters.

Often PC clusters are used as a (relatively cheap) platform for large produc-
tion codes which were running for many years on Unix workstations. It would
be diÆcult to adapt these codes to the requirements of the hardware, thus it
is important to con�gure the cluster according to the requirements of the code.
This was one of the reasons for the development of CLUE.

1.2 Hardware

In this paper two speci�c PC clusters are investigated.

The Vienna Cluster was built and operated by the authors. It consists of
�ve dual 350MHz Pentium II systems (p = 10) with 256MB main memory,
512KB Level 2 cache and local 4.5GB hard discs. The nodes are connected
via a switched Fast Ethernet network (measured bandwidth: 12.5MB/s).

The Aachen Cluster, a Siemens hpcLine PC cluster, consists of 16 dual pro-
cessor boards equipped with 400MHz Pentium II processors (p = 32), 512KB
Level 2 cache, 512MB main memory and local 4GB hard discs. The nodes
communicate either via switched Fast Ethernet or SCI (Scalable Coherent
Interface; measured bandwidth: 80MB/s). The SCI network is con�gured
as a two-dimensional torus.

For more details see Hlavacs et al. [8].

1.3 Algorithms

Algorithms for distributed memory parallel computers see three scenarios:

Computation bound algorithms achieve near-linear speedup (provided the
work load is distributed evenly). Simulation of such algorithms does not de-
pend signi�cantly on the accuracy of the network simulation, since commu-
nication time is negligible. In this case the accurate simulation of computing
time is important for reliable simulation results.

Communication bound algorithms do not speed up at all, since additional
processors increase the amount of data to be communicated. Simulation
of such algorithms does not require an accurate processor simulation, since
computation time is insigni�cant. Accurate network simulation is crucial in
this case, including (in many cases) contention analysis and simulation.

Transition algorithms which are computation bound when running on a few
processors and communication bound when running on many processors.



4

To �nd the transition point between the computation bound mode and the
communication bound mode reliably, both processors and network have to
be modeled accurately.

Considering these three modes, ScaLapack routines were chosen to demonstrate
the usefulness and the reliability of CLUE. With respect to an increasing ratio of

oating-point operations to data movement the following algorithms have been
selected.

Cholesky Factorization. SCALAPACK/pdpotrf is a routine which computes
the Cholesky factorization UTU of a symmetric, positive de�nite matrix A.
As the computation proceeds, elements of A are overwritten with elements of
U . A and U are stored in a block-cyclic two-dimensional way using identical
block sizes in both dimensions.

LU Factorization. SCALAPACK/pdgetrf computes the LU factorization PLU
of a general matrix A. The output matrices U and L are stored in place of
the input matrix A which is distributed in a two-dimensional block-cyclic
manner using identical block sizes in both dimensions.

Matrix Multiplication. The routine PBLAS/pdgemm multiplies two matrices:
C = AB. All three n � n matrices are distributed in a two-dimensional
block-cyclic way. Identical block sizes are used in both dimensions and for
all matrices.

2 The Simulation Tool CLUE

CLUE is based on MISS-PVM, the Machine Independent Simulation System for

PVM3 (Kvasnicka, Ueberhuber [9]). CLUE is meant to support the development
of software for parallel computers which are not yet available and to carry out
reproducible performance assessments in environments with constantly changing
load characteristics (like NOWs). CLUE also makes the debugging of parallel
programs easier. Using CLUE, reliable information can be obtained to reach the
optimum decision on hardware con�gurations (processing elements and commu-
nication networks) before actually purchasing this hardware. Thus, hardware
can be adapted to individual software features, reversing the currently used tech-
niques of adapting high-performance software to hardware features (as used, for
instance, in FFTW [4, 5], Phipac [1], or the Atlas tool [11]). To exploit these
features of CLUE, it is not necessary to rewrite existing code or create addi-
tional one (neither in C nor in Fortran). PVM based code can be used without
modi�cation.

CLUE's favorable properties are achieved by establishing a virtual layer which
does not have to be tampered with when developing software. The Virtual Layer
for PVM3 is situated between the user program and PVM3 (see Fig. 1). All
calls to PVM3 are redirected to CLUE subroutines performing virtual timing



2 The Simulation Tool CLUE 5

PVM 3
Routine
Calls

PVM 3
Routine
Calls

Native
Communication

Routines

PVM 3

Parallel
User Program

Virtual Layer
for PVM 3

Output
Processing

ParaGraph
Post Animation

Trace
File

Simulation

Output

Figure 1: Position of the Virtual Layer for PVM.

and virtual machine adaptation. They eventually pass on the calls (in a modi�ed
form) to PVM3.

Use of the virtual layer is possible without the necessity to modify the user
program. It is suÆcient to use di�erent include �les and to link the user program
to additional libraries. The virtual layer generates output �les which trace calls
to communication subroutines. These trace �les are the input of post-mortem
visualization.

This tracing technique has two major advantages over conventional trace �le
writing. The Virtual Layer for PVM3 (i) uses its own simulated system time,
and (ii) makes a virtual machine available to the user.

The virtual machine may represent a wide variety of real machines which
may even be non-existent or not available at the moment. Machine parameters
are read from a �le when CLUE is started. These parameters may be changed
dynamically during simulation.

The virtual layer makes it possible to compare program runs on computers
having di�erent communication latency and computation speed (independent of
actual load characteristics). For instance, reproducible experiments for the as-
sessment of load balancing strategies on irregularly loaded NOWs can be made
easily and quickly.

High level communication libraries like the Blacs (Dongarra et al. [2, 3])
can be simulated very comfortably. Once the high level library routines (based
on PVM) have been recompiled, no further modi�cations are needed. The user
program is linked with the new library. The result is a program that performs



6

the same task as before, except that it writes an output �le (if required) and can
be simulated on virtual machines.

For small programs usually the whole simulation runs on one processor. For
large programs (especially those performing compute intensive tasks) the overall
execution time is often a prohibitive factor in simulation. Therefore, in cases
which require much time or main memory, the simulation can be distributed to
several processors.

CLUE was designed to have a very low simulation overhead by using execution
driven simulation and compiled communication models, which are parametrized
at the beginning of each simulation run.

3 Numerical Experiments

This chapter contains two sections: the �rst one brie
y describes the simulation
scenario and shows how to get performance data with respect to existing clusters,
the second one validates these results in a comparative study of simulated and
measured program runs.

3.1 Measurement, Modeling, and Simulation

Up to now, two Beowulf clusters have been examined (see Section 1.2). On both
clusters, measurements have been carried out to obtain the following communi-
cation related parameters. (i) Send time: The time the sender spends in the send
call. (ii) Transmission time: The di�erence between the send time and the time
the message needs to be received by the receiver.

Fig. 2 shows the send and transmission times observed on the Vienna cluster.
Both sender and receiver run on the same node, thus the message is not sent
over the network. The piecewise linear model used for the simulation in shown
as well.

Additionally, for the case of sending messages from one sender to several
receivers at the same time, contention has been observed that increases both the
send and transmission time. This is important for those cases, where all tasks
synchronize, and one of the tasks then sends out messages to one or several others
to redistribute work or results.

Each cluster was simulated by using two communication modes (intra- and
inter-node) and by using a contention model. This method achieves suÆciently
accurate results even on the torus-shaped network of the Aachen cluster.

Measured computation time is modi�ed by a computational factor. For ex-
ample, each processor of the Aachen cluster was measured to be 10% faster than
one of the processors of the Vienna cluster.

The SCI network of the Aachen cluster was only available for the MPI version
of the Blacs. Thus, communication parameters and performance data of the real



3 Numerical Experiments 7

Modelled Transmission Time
Real Transmission Time

Modelled Send Time
Real Send Time

T
im
e
(s
ec
o
n
d
s)

Send and Transmission Time

Message Size (KB)

10,0001,0001001010:10:010:001
10�5

10�4

10�3

10�2

10�1

Figure 2: Send and transmission time for the Vienna cluster. Sender and receiver are on the

same node.

runs were measured on the Aachen cluster using the MPI version of the Blacs,
whereas the simulation runs were carried out on the Vienna cluster using the
PVM version of the Blacs.

3.2 Results

In order to obtain widely applicable results, three important algorithms from
the �eld of numerical linear algebra (see Section 1.3) have been chosen to be
simulated on the two clusters. 2000 � 2000 matrices were chosen to set up
problems of a sizeable computational complexity. Moreover, these problems are
imposing substantial main memory requirements on the simulating node.

The simulation runs were carried out to answer the following questions. (i) Do
the real observations and the simulated runs have the same qualitative properties?
(ii) Do the real observations and the simulated runs have the same quantitative
properties? (iii) Can the simulation results be used to evaluate the performance
of workstations clusters a priori?

In Figs. 3 to 8, the observed and simulated wall times are plotted against the
processor grid used. Such a grid or 2-dimensional mesh is always assumed to
de�ne the topology of the parallel computer, even if in reality this is a cluster of
SMPs connected over a bus, star or ring topology. Each processor is assigned a
place in the virtual mesh topology. Basically, an N �M grid means that N �M
processors were used to compute the task. The relation of N to M de�nes the
communication pattern used, which has a strong in
uence on eÆciency as the
diagrams show.

The diagrams reveal the answers to the above questions. (i) The real observa-
tions and the simulated runs have the same qualitative properties. (ii) The real



8

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

30

20

10

0

Figure 3: Cholesky factorization of a 2000�2000 matrix on the Vienna cluster. Blocksize 100.

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

50

40

30

20

10

0

Figure 4: LU factorization of a 2000�2000 matrix on the Vienna cluster. Blocksize 200.

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

70

60

50

40

30

20

10

0

Figure 5: Multiplication of a 2000�2000 matrix on the Vienna cluster. Blocksize 500.



3 Numerical Experiments 9

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

15

10

5

0

Figure 6: Cholesky factorization of a 2000�2000 matrix on the Aachen cluster. Blocksize 400.

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

50

40

30

20

10

0

Figure 7: LU factorization of a 2000�2000 matrix on the Aachen cluster. Blocksize 50.

simulated
observed

Grid

W
a
ll
T
im
e
(s
ec
o
n
d
s)

2�53�32�42�32�21�101�91�81�71�61�51�41�31�21�1

120

100

80

60

40

20

0

Figure 8: Multiplication of a 2000�2000 matrix on the Aachen cluster. Blocksize 100.



10

observations and the simulated runs have the same quantitative properties, with
a few exceptions. Compared with the real run (Fig. 7), the simulation predicts a
slightly stronger decrease in execution time with increasing number of processors,
and the performance factor chosen for the Aachen cluster was not appropriate
in some cases (cf. Fig. 8). This deviation must be due to some internal di�er-
ences of the processors. (iii) The simulation results can be used to evaluate the
performance of workstations clusters a priori, since the important variatons in
execution time are at the correct places.

4 Summary and Conclusions

In this paper the new simulation tool CLUE is described. This tool is meant to
investigate the performance behavior of clusters of SMPs.

Simulation results obtained for a PC cluster with slow communication (using
Fast Ethernet) turned out to be very accurate. Both qualitative and quantitative
performance behavior can be simulated highly satisfactory.

Simulating the performance of PVM versions of Scalapack and the PBlas
does not require any modi�cation of the PVM code. Simulating MPI versions
by using PVM versions on a di�erent type of node is more demanding. Still,
performance diagrams indicate that the qualitative behavior of the parallel pro-
grams is described accurately whereas quantitative results are sometimes a little
misleading.

It may be concluded, that performance comparisons between di�erent clusters
of SMPs are possible, though experiments must be carefully designed and results
have to be interpreted cautiously. The qualitative behavior of parallel programs
running on clusters of SMPs can be simulated accurately.

Using CLUE it is possible to analyze the behavior of parallel programs and
predict their performance, depending on cluster parameters. Simulation results
can be used to investigate the in
uence of di�erent parameters of the simulated
workstation or PC cluster, in order to plan new hardware con�gurations or make
an educated choice between several alternatives.

Outlook. Future work will include the development of improved network models
to simulate various topologies. Also, classical network simulators like OPnet or
ns will be used to develop new ways of estimating simulation parameters for
workstation or PC cluster con�gurations that are not (yet) available.

Furthermore, the performance of several other clusters will be investigated in
order to improve and stabilize the simulation methodology.



4 Summary and Conclusions 11

Acknowledgements

We wish to express our gratitude to the computing center of the RWTH Aachen
for the access to the hpcLine cluster and to the Austrian Science Fund (FWF)
for �nancial support.

References

[1] J. Bilmes, K. Asanovic, C.-W. Chin, J. Demmel, OptimizingMatrix Multiply using

PhiPac: a Portable, High-Performance, ANSI C Coding Methodology, Proceed-
ings of the 1997 International Conference on Supercomputing in Vienna, Austria,
ACM Press, NewYork, 1997, pp. 340{347.

[2] J. J. Dongarra, R. van de Geijn, Two-dimensional Basic Linear Algebra Commu-
nication Subprograms, Lapack Working Note 37, 1991.

[3] J. J. Dongarra, R. C. Whaley, A User's Guide to the Blacs Version 1.1, Lapack
Working Note 94, 1995.

[4] M. Frigo, A Fast Fourier Transform Compiler, Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design and Implementation
in Atlanta, Georgia, ACM Press, NewYork, 1999, pp. 169{180.

[5] M. Frigo, S.G. Johnson, The Fastest Fourier Transform in the West, Technical
Report MIT-LCS-TR-728, MIT Laboratory for Computer Science, 1997.

[6] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM:

Parallel Virtual Machine|A Users' Guide and Tutorial for Networked Parallel

Computing, MIT Press, Cambridge London, 1994.

[7] W. Gropp, E. Lusk, A. Skjelum, Using MPI, 2nd ed., MIT Press, Cambridge
London, 1999.

[8] H. Hlavacs, D. F. Kvasnicka, C.W. Ueberhuber, CLUE|Cluster Evaluation,
Technical Report AURORA TR 2000-05, Vienna University of Technology, 2000,
www.vcpc.univie.ac.at/aurora/publications/.

[9] D. F. Kvasnicka, C.W. Ueberhuber, Developing Architecture Adaptive Algorithms
using Simulation with MISS-PVM for Performance Prediction, Proceedings of the
1997 International Conference on Supercomputing in Vienna, Austria, ACM Press,
NewYork, 1997, pp. 333{339.

[10] C.W. Ueberhuber, Numerical Computation, Springer-Verlag, Berlin Heidelberg
NewYork Tokyo, 1997.

[11] R. C. Whaley, J. J. Dongarra, Automatically Tuned Linear Algebra Software,
Lapack Working Note 131, 1997.


