
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Darwin’s Dream

Andreas Huber
Institute of Distributed and
Multimedia Systems, Univ.

of Vienna, Lenaug. 2/8,
1080 Vienna, Austria

e0340147@student.tuwien.
ac.at

Markus Paulhart
Institute of Distributed and
Multimedia Systems, Univ.

of Vienna, Lenaug. 2/8,
1080 Vienna, Austria

e0325357@student.tuwien.
ac.at

Christian Kloiber
Institute of Distributed and
Multimedia Systems, Univ.

of Vienna, Lenaug. 2/8,
1080 Vienna, Austria

christian.kloiber@gmail.
com

Helmut Hlavacs
Institute of Distributed and
Multimedia Systems, Univ.

of Vienna, Lenaug. 2/8,
1080 Vienna, Austria

helmut.hlavacs@univie.ac.at

ABSTRACT
This paper introduces Darwin’s Dream, a system for simulating
artificial plant life on a planet wide scale. Darwin’s Dream
contains a sophisticated climate simulation, which produces
different climate zones on a planet, taking into account things like
rain fall, clouds, and sun light intensity. The climate simulation is
used to drive the evolution of a complex plant ecosystem. As
planet topology we use something like a “flat sphere”, which
eases the use of 2D height maps. An important focus of Darwin’s
Dream is also on the realistic visualization of the planet’s surface.

Categories and Subject Descriptors
I.6 Simulation and Modeling: Miscellaneous

Keywords
Climate simulation, artificial life, evolution of plant live, weather
visualization

1. INTRODUCTION
The availability of high computing power in off-the-shelf PCs has
enabled the simulation of live evolution for everyone. Evolution
of life is an extremely complex area, since evolution as a
stochastic process requires the investigation of the genome of
large populations, i.e., hundreds, better thousands of subjects
should be observed for many generations.

Evolution here means the process of inheriting and mutating
genomes which decide about how the individuals fit into their
environment and whether species survive. If resources are scarce
or the environmental conditions are unfavorable, then only the
fittest will survive, as postulated by Charles Darwin. The
simulated genome must represent basic properties of the simulated
species which are necessary for survival under different
environmental conditions. Simulation of evolution can be viewed
from various aspects.

First, it is a model explaining why evolution itself works. Second,
it might be a way for optimizing complex systems, as done by
genetic or evolutionary algorithms, or genetic programming.
Third, it might try to forecast live of our planet in a few million
years, or it might try to model how live may evolve on alien
planets with conditions totally different to ours. Apart from
serious applications, evolution of live might be simulated for the
sake of fun, in a game like fashion. The result of the evolution of
artificial live, as unpredictable as it is, might have fascinated
Charles Darwin (thus the name of the project).

2. RELATED WORK
The simulation of live can focus on the evolution1 of animals, or
the evolution of plants. For the evolution of animal life or more
abstract “life” forms like computer programs, numerous systems
exist2, for example [2, 4]. Evolution of pure plant life is seen not
as often as animal evolution, probably due to its more static
nature. Panspermia [3] was a system very similar to ours, focusing
on the evolution of plants with their various shapes, and using
professional graphics workstations. Interactive Plant Growing [5]
was more an art installation than the simulation of plant life in an
ecosystem. Nerve Garden [3] simulates the evolution of plant life,
but may also include insects and is based on VRML 2.0, but on a
smaller scale (islands) than our planet wide system. Nerve Garden
itself evolved into the Biota@Home initiative, which focuses on
the creation of artificial nature systems run on peer-to-peer
networks.3 The company Maxis created several games focusing on
the evolution of life, including SimEarth and SimLife [6].
Together with Electronic Arts, Maxis recently released the game
Spore, which is the best professional artificial life game so far.4

The innovation of our system called Darwin’s Dream is the
complex interaction between a detailed climate simulation and the
novel flat sphere topology on the one hand, and a planet wide
plant ecosystem on the other hand. However, Darwin’s Dream is
rather meant for pleasure in a game like fashion than for studying
plant evolution itself.

1 http://www.google.com/Top/Science/Biology/Evolution/
2 http://www.google.com/Top/Computers/Artificial_Life/
3 http://www.biota.org/
4 http://www.spore.com/

3. DARWIN’S DREAM
The aim of the interdisciplinary project Darwin’s Dream is to
simulate and visualize a planet’s biosphere, including its climate
and flora. Plant life of the planet is ruled by the laws of evolution,
while the climate simulation adheres to knowledge from
climatology and meteorology.

The main idea is to create a world similar to ours, with similar
plant evolution and weather. It must be noted that though the used
models try to mimic as much of real evolution and climate as
possible, the project does not claim to implement models of the
same complexity as found in the respective specialized sciences.
Instead, it is an attempt to create a sandbox for playing with a
world, similarly to games like “SimCity” or “Spore”.

Since the computation of the behaviour of thousands of plants
demands high computational power, a main goal has been to find
a suitable software architecture for reducing the main task into
smaller manageable subtasks. As a consequence, the system is
split into a server part being responsible for computing the main
simulation, while the visualization of the results is done on the
client side. For doing this, the server transfers a snapshot of the
world to the client, which then may roam freely through the world
and its flora and current weather.

Figure 1. The system architecture.

The whole system has been implemented by using C++, for
reasons of its object oriented nature and a probably better
performance compared to languages like Java. The server side
implementation has been implemented in standard C++ without
any fancy libraries, thus enabling to run the simulation on
different platforms.

4. CLIMATE SIMULATION
The server side simulation is responsible for simulating the
climate of the world. Here, one month is split into 30 days and
nights. The main difference between the months is the different
inclination of the plant’s axis, thus mimicking the different
intensity of the sun light warming up the planets surface
throughout a year.

The climate simulation is based on three main objects.

• The planet’s surface. Here all plants are grown. The
surface is realized using a 2D grid, each element of the
grid represents an area equivalent to one square
kilometer. These elements are called terrain fields and
are able to retain water, or give off water to its surface.

• The planet’s atmosphere. This is a medium above the
planet’s surface, which is able to store and transport air
and water. It is modelled using a 3D grid, each grid
element being called climate block.

• The climate map. This is the main simulation result of
the world climate, storing average climate data of days
and nights for each month and climate block. The
climate map is then used as an input into the plant
simulation with constant values for each simulated
month. For instance, since in the month May rain is
observed only rarely, the average rainfall of May is
quite low. This value then is used for defining the
average rainfall for each day in May. Since the climate
of a planet is known to be very stable, the climate map
has to be updated only infrequently, every few
simulated years.

The planet’s surface is also annotated by height information. This
information is taken from a grey-level graphics file, each pixel
representing the height information of the terrain field it
represents. As already pointed out, a terrain field’s area is 1 km2,
the height map contains exactly nn 2× terrain fields as shown in
Figure 2, where the integer n depends on the graphics file’s
resolution and can be chosen arbitrarily.

N
or

th
 P

ol
e

S
ou

th
 P

ol
e

S
ou

th
 P

ol
e

Eq
ua

to
r

E
qu

at
or

Figure 2. The planet’s height map (transposed).

Figure 2 also shows the topology of the world map, and explains
why the chosen size is nn 2× instead of nn× . The height of the
world map is twice the size of the width, the north pole being
assumed to be in the middle of the map, rather than at the top. The
south pole is split into two parts, one at the top, the other at the
bottom. The equator also is represented two times, being between
the north pole and the two south poles. The idea of this topology
is as follows. The south pole at the top is bent down and is
connected to the south pole at the bottom, thus creating a cylinder
in 3 dimensions with only one north and one south pole. Of
course, a planet always has the shape of a sphere, and not a
cylinder. Since a sphere contains only one equator, the cylinder is
then squeezed again into a flat form, thus connecting the left and
right sides to their respective counterparts on the other side. The
result is something like a flat sphere (Figure 3).

The reason for this peculiar topology is this. The resulting flat
sphere contains distortions at the poles which are much smaller
than the distortions found in other visualization mechanisms.
Furthermore, at the equator no distortions are found. Assuming
that the world map from Figure 2 is described by a coordinate
system nynxyx 21,1),,(≤≤≤≤ , then if someone for instance is

at the position),1(y and goes one terrain field to the left, he will

enter the terrain field)2,1(yn − , this time coming from the left.

On the other hand, someone standing at position),(yn and going

one field to the right will enter terrain field)2,(ynn − from the
right. This additionally makes sure that people travelling east or
west always remain at the same latitude, and thus in similar
climatic regions.

The result of the above described mapping is a way for
representing sphere textures by a 2D grid. Throughout a
simulation run the grid fields are updated row and column wise by
using the climate map. During such an update it is tested whether
a terrain field is able to emit water, which cannot be stored in the
terrain field, to a neighboring field. This way it is possible to
dynamically create and destroy stagnant and flowing water bodies.

Figure 3. The planet’s 2D/3D topology.

5. GENETIC MODEL
Darwin’s Dream implements a mature genetic model of plant life
and evolution. Plants develop according to their genome, which is
a set of genes and which describe the plants physiology. Darwin’s
Dream implements a very complex genome which allows to
describe not only the plant’s appearance, but also its interaction
with the environment, and additionally its interaction with other
plants. As an example, one gene describes how sensitive the plant
reacts to different light conditions, i.e., areas with much sun light,
or with less sun light. As a design principle we tried to minimize
the set of genes which have only either positive or negative
properties, i.e., where the optimum profit (or maximal damage) for
the plant is achieved either at the minimum or maximum value.
Also the genome contains detailed properties of the plant’s
appearance. In total, the genome of each plant consists of 697 bits
describing 58 genes.

5.1 Plant Status
An important part of the genome decides whether the plant can
survive under certain environmental conditions. For instance, a
plant needs water, nutrients, sun light and certain temperature
conditions for its survival. Since these factors are usually not all
satisfied optimally, the growth of plants depends on the
environment, and the plants will show different properties
depending on their position. Thus, additionally to its genome,
each plant is equipped with individual status variables describing
its current condition, for instance its current size.

In order to create a complex system of woven properties, the
status variables also depend on numerous genes, but also on the
current value of other status variables. In total, each plant is
equipped with 36 status variables.

5.2 Plant Life Cycle
The life start of each plant is triggered by a seed which might be
either created artificially by the user, for instance at simulation
start up, or it might be created by a mother plant which passes on
its genome. The seeds are first carried around by the wind, and
later dropped down to the floor after some time. At some
instances, the wind phase might be quite short, and the seed might
drop down almost immediately. Once lying on solid ground, the
seed starts to grow its roots, but only if the environmental
conditions are within some bounds. If the conditions never fulfill
the necessary preconditions, the seed will die after some
individual random time has gone by.

Once a plant spreads out of its seed, the following stages are gone
through:

First, the minimum amount of water needed by the plant is
computed. If this minimum is not available in the plant’s
surrounding, then the plant suffers damage. The amount of
damage depends on the difference of available to minimum
required amount of water. Generally, any insufficiency of
nutrition is recorded in the plant’s status variables.

Only if the minimum amount of water is available, the plant starts
growing its stem. Again the amount of growth depends on
environmental factors, like enough sun light, water and nutrition.

The third stage is the growth of leaves and blossoms, again
depending on environmental conditions. Since it would be very
demanding to visualize the slow growth of leaves and blossoms,
we decided to simplify the visualization at this point, meaning that
leave and blossom growth happens instantaneously without time
delay.

The final stage of a plant is its reproduction, which is carried out
periodically throughout the life of a plant. The amount of
reproduction again depends on the environment, the better it is,
the more seeds are produced and sent into the world. There are
two ways for reproduction. First, if a plant was not hit by similar
spores from other plants, it may decide to reproduce
autonomously and inseminates itself. If, on the other hand, it has
been hit by spores from similar other plants, the produced seeds
will be a combination of both genomes. This is done by randomly
selecting genes from the two genomes and creating a new genome
from them.

6. VISUALIZATION
As was explained earlier, a snapshot of the world simulation is
transferred to the client to be visualized. The client enables to
roam this world freely by flying in 3 dimensions above the
surface. The client of course also allows to retrieve data about the
climate, plants and plant evolution.

An important point for choosing a suitable rendering system was
given by the fact that the visualization of a whole world and
possibly thousands or even millions of plants is very resource
demanding, thus requiring powerful PC technology and mature
graphics cards. Furthermore it was clear that an important aspect
of the visualization would also include the rendering of weather
and climate.

As target platform we chose Windows XP with compiled C++
programs, a Java based approach was not chosen because of the
already mentioned performance considerations.

For graphics rendering, the Object Oriented Graphics Rendering
Engine (OGRE) has been chosen.5 Amongst others, the reasons
for choosing OGRE include its strict object orientation and C++
binding, its maturity, the good documentation and its free
availability.

6.1 Terrain
OGRE already contains support for the visualization of terrains
and surfaces (Figure 4). A possible obstacle here is given by the
fact that OGRE only allows to use nn× maps for height
information. In order to use the same maps for visualization and
climate simulation, the nn× height map used for visualization
has been stretched in its y-dimension by a factor of 2, thus
yielding the corresponding height map for climate simulation. For
improving the realism, further textures were put on top of the
standard ground texture. For instance, in case of considerable
vegetation, the surface is covered by green meadows, while the
arctic regions are covered by white ice. Depending on the
simulation outcome, several different textures can be combined.

Figure 4. Terrain with trees.

6.2 Day and Night
Since the visualization depicts only one particular snapshot, time
is frozen during the visualization. This means that the areas with
daylight and nightfall do not change when roaming through the
planet. Especially the sun does not change its position. For
reaching this effect the picture of the sun and the sun rays are put
at a fixed distance from the observer. As soon as the observer
moves, the position of the sun is moved and rotated around the
observer (Figure 5).

Depending on the position of the sun, the direction, color and
intensity of its light rays are computed. Additionally, the color of
the sky also depends on the position of the sun and the observer.
If the observer enters a region with night, the sky’s color changes
to dark blue or black, while the terrain fog gets more dense and
darker. Furthermore, a starry sky is emulated, its transparency and
thus visibility depends on the amount of darkness of the area.
Stars are represented by pictures of stars, being similar to a sun,
but without their own lightening source, and being placed at a

5 http://www.ogre3d.org/

constant distance above the observer. As a consequence, we do
not use a sky box as done in many other computer games,
although OGRE of course enables the use of such a tool.

Figure 5. A cloudy and sunny sky.

6.3 Water
As was said before, the simulation enables the dynamic creation
and deletion of stagnant and flowing water. These are visualized
by using squares, which are equipped with a texture showing a
water animation. The position of these squares then depends on
the water level above the average height of the respective terrain
field. Since terrain fields have different heights, this way, small
islands may be created. The positioning is done after the water
levels of neighboring terrain fields have been counterbalanced
with each other, resulting in a homogeneous water level. An
additional animation of oscillating waves is then put over the
common water surface (Figure 6).

The observer is also able to dive into the water, thus resulting in a
darkening of the scenery, the light source is hidden and the used
fog is made denser.

Figure 6. Arctic sea.

6.4 Weather
For the visualization of the weather, a major challenge was the
dynamic creation of clouds. Clouds are made of a number of
different cloud elements, which are chosen depending on the
current weather conditions created by the simulation engine. A
cloud is positioned above a terrain field and may overlap
neighboring terrain fields. The higher the cloud density should be
rendered due to simulation, the more cloud elements are used, and
the darker the center of the cloud gets. If a cloud exceeds a certain
size, it is equipped by a cloud bottom including a suitable cloud
surface texture. The bottom is surrounded by small smooth silky
cloud elements which always point into the direction of the
observer. On top of a cloud, a number of large floating cloud
elements form a kind of stack above each other. These stack
elements are again equipped with realistic cloud textures. Smaller
clouds do not possess a bottom, and their cloud stacks are created
by using smaller stack elements. As a result clouds are complex
dynamically created objects, neighboring clouds even can be
combined into one larger cloud. This way almost all cloud types
observed in real nature can be simulated (Figure 7).

The weather simulation also allows the visualization of rain and
snow fall. Since the OGRE engine uses particle systems for both,
heavy rain or snow fall may induce severe performance problems
to the client.

Figure 7. Clouds.

6.5 Plants
Similar to clouds, plants are also created by combining several
elements into one plant object. According to the respective plant
genome, the plant simulation delivers data for the plant stem and
its treetop. However, the terms “stem” and “treetop” here
represent the respective parts of all plant types, not only trees. For
instance, in the simulation, herbages and bushes do not contain a
stem but a “treetop” with suitable texture. Trees then are
additionally equipped with a properly scaled stem. For delivering
a suitable representation of different plant types, the simulation
engine chooses the suitable textures from a large palette of plant
parts. Since Darwin’s Dream has been designed for simulating
large numbers of plants, the respective parts of a plant are created
by placing the texture onto two orthogonal pictures. This way, a
strong off-the-shelf PC, perhaps additionally equipped with a

consumer graphics card, is able to visualize thousands of plants
without showing loss of performance (Figure 8).

Figure 8. Plants at evening.

6.6 The User Interface
The graphical user interface allows to retrieve information about
all presented plants. This is done by mouse clicking onto the
respective plant. This information includes the plant age, the plant
height, its fertility cycle, the genome, general plant status, and
many other things.

The GUI also allows loading different simulation snapshots from
the simulation server.

7. COMMUNICATION
For reasons of human readability the communication between
server and clients is carried out via an XML file. Fortunately,
many free libraries for the manipulation of XML structures, like
Xerces-c6 or TinyXML7 exist.

A drawback of XML is the fact that documents containing
thousands of objects might get very large. In order to limit this
growth, we have decided to use abbreviations instead of full
names whereever possible. The abbreviations are explicitly
specified at the start of the document. An example for this is given
by

 <ulPlantInitDate value="A" />

 …

Here the attribute “ulPlantInitDate” is replaced by the
abbreviation “A“. Later in the file, for a specific plant, the
attribute “A” is then assigned a certain value, in this case zero.

During simulation, the server periodically produces such a system
snapshot, which may then be transported to the client, for instance
by using HTTP. The file may be used for visualization at the
client, but also as a starting point for additional simulations.

6 http://xml.apache.org/xerces-c/
7 http://www.grinninglizard.com/tinyxml/

8. CONCLUSION
In this paper, the evolution game Darwin’s Dream is presented.
Darwin’s Dream is meant for creating a world of plants, and
simulates artificial plant life and its evolution. The main focus of
Darwin’s Dream lies on an accurate simulation of a planet’s
climate, the evolution of plants growing in different climatic
zones, and a realistic visualization of the simulation result.

The system now is in a very early beta state, requiring still large
effort for reaching a stable version. However, all important parts,
including climate simulation, plant evolution, and visualization
already work and can be tested.

9. REFERENCES
[1] B. Damer, Nerve Garden, ACM SIGGRAPH 97, 1997.

[2] T.S. Ray, Overview of Tierra at ATR. In Technical
Information, No.15, Technologies for Software Evolutionary
Systems. ATR-HIP. Kyoto, Japan, 2001.

[3] K. Sims, Artificial Evolution for Computer Graphics,
Computer Graphics 25-4 (1991), pp. 319-328.
http://web.genarts.com/karl/panspermia.html

[4] K. Sims, Evolving 3D Morphology and Behavior by
Competition., Artificial Life 1-4 (1994), 353-372.

[5] C. Sommerer and L. Mignonneau, Interactive Plant Growing,
in Ars Electronica - Facing the Future (Cambridge, MA:
MIT Press, 1999), pp.393-394.

[6] Wikipedia, SimLife, http://en.wikipedia.org/wiki/Simlife

