
Energy Saving in Future Home Environments
Helmut Hlavacs

and Roman Weidlich
and Thomas Treutner
University of Vienna,

Department of Distributed and Multimedia Systems
Lenaug. 2/8, 1080 Vienna, Austria

Email: {roman.weidlich | helmut.hlavacs }@univie.ac.at, a0306814@unet.univie.ac.at

Abstract—Already, hundreds of millions of PCs are found
in homes, offering high computing capacity without being ade-
quately utilized. This paper reveals the potential for energy saving
in future home environments, which can be achieved by sharing
resources, and concentrating 24/7 computation on a small number
of PCs. We present three evaluation methods for assessing the
expected performance. A newly created prototype is able to
interconnect an arbitrary number of homes by using the free
P2P library FreePastry. The prototype is able to carry out task
virtualization by sending virtual machines (VMs) from one home
to another, most VMs being of size around 4 MB. We present
measurement results from the prototype. We then describe a
general model for download sharing, and compare performance
results from an analytical model to results obtained from a
discrete event simulator. The simulation results demonstrate that
it is possible to reach almost optimal energy efficiency for this
scenario.

I. INTRODUCTION

Future home environments are full of equipment offering
a multitude of functions making our life more comfortable.
Parts of this equipment runs continuously in order to be
instantly used when needed, or to run services that require
24/7 operations. Today, especially PCs and notebooks often
continuously run and consume energy, but remain underuti-
lized. In our research approach we want to harvest unused
cycles in home environments, and automatically decrease the
power consumption of the whole distributed system, while still
offering the same service level.

II. RELATED WORK

Energy consumption in computers has always been an
important issue, that however has gained increasing attention
in the last couple of years. Most important, the climate change
has stimulated the idea of Green Computing or Green IT,
leading manufacturers to continuously develop low power
components in order to decrease the global energy consump-
tion caused by computers. In fact, the estimated 1.5 billion
computers running worldwide use an estimated total of 90 GW
of electrical energy, comprising a share of 10% of the total
energy consumption of mankind. Furthermore, this energy
consumption already produces an amount of CO2 comparable
to the one of the entire airline industry. In total, end devices in
the home are contributing to a large portion of the electricity
consumption growth in the EU for instance [1].

Another reason for trying to save power consumption caused
by computers is the considerable cost, an ordinary off-the-shelf
computer running on a 24/7 basis in a European home may
well cause energy costs of several hundred Euros per year,
although this computer not necessarily computes meaningful
tasks, but might be idle most of the time.

The same can be said for professional infrastructure found
for instance in offices, or in server farms, which have increased
their power consumption significantly over the last years [2].
In the latter, energy costs are not only caused by the consump-
tion of the servers themselves, but also by the need for cooling
the servers, and long term electricity consumption costs are
steadily approaching the cost of the hardware itself [3].

In the past manufacturers have focused on optimizing
the power consumption of single components like CPUs,
harddisks, mainboards, etc. Strategies introduced in the past
include SpeedStep [4], PowerNow, Cool’n’Quiet, and Demand
Based Switching. These measures enable slowing down the
clock speeds (Clock Gating), or powering off parts of the
chips (Power Gating), if they are idle [5], [6]. All of the above
techniques must be regarded as local energy saving techniques.

This, however is contrasted by the enormous growth of
the IT industry, and the increasing numbers of new PCs
and devices worldwide. Of course, the growth of running
PCs incurs also a growth of the potential computing power
available. Initiatives like Seti@Home1, Folding@Home2 and
many others try to exploit idling hardware at millions of homes
in order to maximize the computing output. These and similar
approaches like Grid computing 3 are fully centralized in order
to work, depending on central instances for distributing work,
security, management etc. On the other hand, there have been
no initiatives to share computing resources in a decentralized,
self-organized way and on a global scale in order to decrease
the total power consumption.

In our work we developed models and schemes in order to
demonstrate the feasibility of sharing computing resources of
idling home devices to substantially decrease the total energy
consumption. Our approach fully relies on self-organization

1http://setiathome.berkeley.edu/
2http://folding.stanford.edu/
3http://www.gridcomputing.com/



and self-management in a decentralized way. The contribution
of this paper is the presentation of measurement and simulation
results showing this energy saving is indeed possible.

III. VIRTUAL HOME ENVIRONMENTS

The specifically targeted research project Virtual Home
Environments (VHE) [7], [8], funded by the European network
of excellence EuroFGI 4, joins researchers from the University
of Vienna, Passau and Cantabria in order to understand how
possibly millions of home devices can be interconnected in a
decentralized way, in order to gain common advantage, like
for instance lowering the total energy consumption. The basic
VHE architecture is shown in Figure 1.

Fig. 1. Basic VHE architecture.

The envisioned architecture interconnects possibly millions
of homes by using a P2P system like Chord or Pastry. Each
home consists of at least one intelligent router and a PC.
The routers must run a special firmware enabling a fixed
continuous entry in the global P2P overlay. This way, the
churn due to hibernating or woken-up PCs that otherwise
might cause high overhead can be decreased dramatically. In
our current work, PCs are required to run the Linux operating
system and additionally a middleware holding the local VHE
intelligence. A more detailed overview over the middleware
and its tasks can be found in [7], [8].

In each home users may create tasks that can either be run
locally, or may be offloaded to another PC. In this case the
system middleware must identify a suitable host in some other
home and transfer the task to this home where it is executed.
Once the task is finished, the results then must be transferred
back the respective task owner. Tasks are put into dynamically
created virtual machines (VMs). This is done in order to allow
the execution of arbitrary tasks, independent of the availability
of special software/libraries at the host, and to encapsulate the
task into a closed environment that acts as a security shield,
protecting the host from possibly malicious tasks.

In an environment like this, which is based on cooperation,
besides important issues like security and quality of service,
the principle of indirect reciprocity (a fundamental prerequisite
of cooperation) must be ensured, meaning that participants

4http://www.eurofgi.org

using resources from other computers must themselves eventu-
ally allow the usage of their own resources [9]. For our system
we have already developed a fairness model that takes into
account different types of resources like CPU, access network
bandwidth or disk space [10].

We identified a set of feasible applications with potential for
energy saving that usually use computers continuously without
need of user input once started.
Download Sharing. In this scenario, home computers some-
times download large files from the Internet, possibly using a
file sharing tool or any other means. Alternatively, computers
may record live streams from some live source, like Web radio
or Web TV. Power saving is done by concentrating downloads
on a small number of computers.
Music/Video Encoding. Music/video encoding is a task that
requires a very high computational power. Computers from
different generations and cost categories exhibit a high vari-
ability with respect to their performance. It might make sense
to offload an encoding task from a weak computer to a much
stronger computer, in order to significantly lower both the
encoding time and the power consumption.
Home Management. Home management denotes managing
sensors and actuators in a home, like temperature control, light,
rain sensors, etc., and requires a computing system running on
a 24/7 basis. In this scenario one computer would be used to
manage N homes, receiving the data from their sensors, and
returning back control messages for changing actuator states.
Avatar Hosting. In the future many virtual worlds are to
be expected, and many people will be represented there by
a virtual copy of themselves, an avatar. In order to keep
their avatar alive, people might want to run client applications
on their home computer. Similar to the home management
scenario, such clients might be concentrated on a small number
of computers.
Server Hosting. This includes hosting private servers like Web
or music servers, which would be required to run on a 24/7
basis, but which can be concentrated on a small number of
computers.
P2P TV. In this scenario, clients contribute access bandwidth
in order to distribute live TV or video-on-demand movies in
a P2P fashion.5

Disk Sharing. In this scenario home PCs might contribute
their disk space in order to provide large data repositories (as
is done already in commercial products), or sharing music
libraries in a legal and reliable way.

We concentrate on the following resource types that can
be shared: (i) CPU, (ii) access network, (iii) disk storage,
and (iv) sensors. The above applications do not use all three
types of resources identically. To consolidate the resources of
an underutilized computer, many tasks must be aggregated.
Thus, under the assumption there exists a suitable software
connecting many computers in a way they can exchange tasks,
then load can be outsourced. While the load is outsourced, the
idle computer could hibernate to save energy.

5http://www.joost.com/ or http://zattoo.com/de



IV. A PROTOTYPICAL IMPLEMENTATION

The idea of task virtualization is to migrate a VM containing
only a specific task. Currently, task virtualization is only possi-
ble within expert environments, since due to the complexity of
decentralized systems, normal users are not able to create tasks
for remote execution. Solving this usability problem for home
users would enable virtually all user groups to participate in
effective resource sharing and is an important part of our future
work.

We have developed a first prototype called “vPastry” that
allows easy to use task virtualization for home environments.
The prototype connects to other instances by using the open
source library FreePastry. On the first start the user is prompted
to provide some basic information about the system he uses. A
minimalistic resource/performance model is used, comprised
of information about
• CPU: Number and performance of CPU cores.
• RAM: Size and speed of main memory.
• Disk: Disk space and speed.
• Energy efficiency of the system as a whole (e.g., power

supply).
• Connection: Bandwidth of connection to the overlay.

CPU, RAM and disk metrics can be understood as how much
a user is willing or able to contribute. This is important as it
enables other participants of the overlay to find a host with
desired abilities for a specific task. For finding appropriate
hosts for a task a user would select the desired characteristics
and click on the search button. vPastry then uses the “anycast”
message of “Scribe”, a publish/subscribe messaging system
offered by FreePastry.

When a node receives an invitation for a task it requested,
the user is prompted to select a virtual machine to send while
a file transfer channel is established in the background. We
currently develop VMs following the just enough operating
system (Jeos) approach, here trying to reduce the size of the
VM to a minimum. Currently available task VMs include
VMs for performance tests, converting an MP3 file to OGG
Vorbis, a “Personal Stream Recorder“ (PSR) capturing N
seconds of a predefined radio webstream and saving it as
MP3, stress tests for stability analysis, downloading a specified
file using BitTorrent, and downloading a specified file using
the command wget. Though all VMs contain a fully bootable
Linux machine, sizes of compressed versions vary between
only 3.8 and 4.7 MB. The only exception is given by the VM
containing an MP3 file, which amounts to 43 MB.

Task VMs consist of a minimal Linux kernel image, a
minimal root filesystem built by OpenEmbedded and a task
filesystem layer, which is put on top of the read-only root
filesystem by UnionFS. The VM’s task filesystem shelters a
shell script which is executed after the VM has started and
diskspace for installing required packages (e.g., lame) and
writing resulting data (e.g., an MP3 file). When the executor
receives a VM, it is decompressed into a temporary place and
started by a runtime execution using the Kernel-based Virtual
Machine (KVM) driver and QEMU (Figure 2).

Fig. 2. vPastry: Executors view. A VM is received, decompressed and started
with KVM and QEMU.

As KVM’s primary user interface is the command line, it is
easy to start VMs with KVM from within other programs as
for example vPastry. The executed command is currently from
the following scheme and can be adapted to future work in
terms of task-specific memory reservation or use of different
network models provided by KVM:

/usr/bin/kvm -kernel bzImage -hda rootfs.ext2
-hdb task.ext2 -m 32 -append ”root=/dev/hda”
-net nic,vlan=0,macaddr=XX:XX:XX:XX:XX:XX
-net tap,vlan=0

Once a task is finished (which basically means that the respec-
tive VM has exited), the VM task filesystem is compressed
and can be sent back to the task owner. Only the task layer
is sent back, as the root filesystem is mounted read-only and
has encountered no changes (and never will).

V. VHE PERFORMANCE EVALUATION

In this section it is investigated how energy can be saved
by sharing home resources, here using download sharing (DS)
as an example. In this scenario N homes are interconnected
with gateways, each home offering one PC. For simplicity
we assume a homogeneous environment. A home’s downlink
bandwidth Bd and uplink bandwidth Bu to outside is shared
between all local computers. For future homes we assume a
synchronous access with either Bd = Bu = 50 Mbit/s, or
Bd = 8 Mbit/s downlink and Bu = 4 Mbit/s uplink bandwidth.
The local bandwidth within the home is 100 Mbit/s. A down-
load task uses on average Bl = 2500 Kbit/s of the available
access bandwidth and has on average a size of F = 700 MB.
It follows that a home can carry out M = Bd/Bl downloads
in parallel. Following a Poisson arrival process, home users
create DS-tasks with arrival rate λ, the service rate is given
by µ = Bl/F .

A. Prototype Measurements

In order to validate the resource consumption of execut-
ing VMs we carried out the following experiments for the
download sharing scenario. A PC (AMD Phenom 9550 Quad-
Core Processor (2.20 GHz) with 8 GB main memory) was



setup to act as a host. A client instance of vPastry then
sent 1 ≤ N ≤ 5 download tasks (VMs) to the host, which
decompressed and ran the VMs. The tasks then downloaded a
file via wget at 300 KByte/s from an FTP server connected
via GigabitEthernet. The total upstream bandwidth of the
FTP server was limited to 8 Mbit/s to simulate a typical
ADSL access network with 8 Mbit/s downstream bandwidth,
the upstream bandwidth of a single FTP connection was
limited to 300 KByte/s to simulate a download that does
not fully utilize the available total downstream bandwidth.
The intention was to assess the resource demands of such
a scenario. Figure 3 (fat lines) shows the results, consisting
of the long term resource utilization of the CPU, the main
memory and the network card of the host PC. As a result,

Network
Memory

CPU

VMs

U
ti

li
za

ti
on

302520151050

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Fig. 3. Resource utilization (CPU, memory, network) of a download scenario.
Fat lines denote results for a 8 Mbit/s access network (i.e., saturation occurs for
d8/2.4e = 4 parallel downloads), thin lines for a 50 Mbit/s access network.

resource utilization clearly depends linearly on the number of
VMs being hosted. Memory and CPU utilization grow slowly,
due to the little resource demands of our minimalistic Linux
operating system. This indicates that when hosting download
sharing on a modern PC, the system bottleneck indeed is the
network, but CPU and memory can be used to host other types
of tasks. When the network is beginning to be the bottleneck of
the system, an interesting behavior can be observed: With three
VMs downloading a file at 300 KByte/s (2.4 Mbit/s) each, the
resulting downstream utilization is clearly within the available
downstream bandwidth of 8 Mbit/s and the network is not yet
a bottleneck. Beginning with four VMs, the network becomes
a bottleneck, as the desirable downstream utilization would be
9.6 Mbit/s, and for five VMs, 12 Mbit/s. As the downstream
bandwidth is limited to 8 MBit/s, the incoming amount of data
and therefore, the amount of data that has to be written to disk,
is limited too. In our experiments we observed that the CPU
utilization rises more slowly when the system bottleneck is
fully utilized. At this point, there is no sense in adding more
VMs, as the resource utilization rises with no benefit of work
being done.

In a second experiment, the FTP server’s total upstream
bandwidth was limited to 50 Mbit/s to simulate a future
Internet access like FTTH (see thin lines in Figure 3). A
client instance of vPastry sent 5 ≤ N ≤ 30 VMs containing

a download task (wget, 300 KByte/s). The intention was
to verify the linear resource demand of a download sharing
scenario also for future Internet access bandwidths.

As a result, our approach scales well to a greater number
of VMs being hosted. Even then, the system bottleneck is
the network, with enough CPU and memory resources being
available for hosting other types of tasks. Furthermore, a large
number of VMs, possibly >100, can be hosted with modern
PCs, which is important for other scenarios like home man-
agement, where only little CPU and network resources might
be needed. When the network begins to be the bottleneck of
the system, which happens in this case between 20 and 25
VMs, the above mentioned behavior is to be observed here
too.

B. Simulation Model

In [7] we developed an analytical model that denotes the av-
erage number of active computers for the download scenario,
which is (assuming the parameters given above) given by Nl

in the local case:

Nl = N

1−

(
1 +

M∑
k=1

1
k!

(
λ

µ

)k
)−1

 , (1)

and by Nd in the distributed case:

Nd =
N∑

a=1

a

a M∑
k=(a−1)M+1

πk +
Bl

Bu

MN∑
k=1

k πk
N − dk/Me

N
, (2)

with

πk = π0
1
k!

(
Nλ

µ

)k

, 1 ≤ k ≤ N M,

and

π0 =

[
1 +

N M∑
k=1

1
k!

(
Nλ

µ

)k
]−1

.

Equations (1) and (2) model a somewhat ideal scenario since
they do not capture the efforts for maintaining a P2P network.
In order to include also middleware overhead, we currently
develop a discrete event simulator for VHE. The simulator
models home resources, home users, and the network infras-
tructure in between. Home computers may be in any of the
following states: (i) passive, (ii) active blocked, (iii) active,
and (iv) active blocked content. A passive (P) computer is
assumed to be in hibernating mode, thus consuming no energy.
In this case, the computer is quasi switched off and does not
contribute its resources to the VHE system. A user deciding
to create a task may wake up the computer, thus setting it into
state active blocked (AB). Once a task is created the VHE
system looks for an active (A) computer that is ready to take
over the task. A computer is called active if it is running and
executing tasks for its own home user, or any other remote
user. If no remote active computer is found, the local computer
itself goes into active state and computes the task, but also
from this time on accepts tasks from other homes. After the
executer has finished a task for some remote user he sends



back the result to the owner. If the owner at this time is in
state P, the owner must switch to state active blocked content
(ABC) for the time the upload of the content from the executer
to the owner takes. After a successful transfer of the content to
the owner the task is finally completed. We can see the home’s
state cycle in Figure 4. To introduce fairness and to ensure that

Fig. 4. State cycles.

the load is equally distributed over all homes in state A, we
introduce a fairness parameter called service time (ST). The
ST is the time period the home must accept remote tasks,
beginning at the time of state change into state A. After the
ST has gone by, incoming task requests are refused. The ST
thus guarantees that each contributer may eventually change
from state A into state P.

C. Simulation Results

In order to assess the download sharing scenario in more
detail we ran several simulation experiments. There the ST
was set to 8 hours, and the simulation time to one year.

In [8] we compared the analytical model (1) and (2) to a
first simulation scenario which already showed good accuracy,
but due to its implementation choices very much depended on
the fairness parameter ST. We improved this simulation model
in the following by making it possible to delay result transfers
back to the task owners. The results for this new version are
shown in Figure 5 for N=100 and 200 homes. The x-axis
shows the maximal number of new tasks per week (load) and
the y-axis the number of active computers necessary to carry
out all generated tasks (cope with the whole load). Thick lines
denote simulation results, while thin lines denote the analytical
model (1) and (2). Furthermore, for each application the local
and distributed case is compared. In the local case no task
will be outsourced, thus all homes have to carry out the tasks
themselves. In the distributed case resources are shared by
task outsourcing.

It can be clearly seen that for the local case far more
computers must be up and running compared to the distributed
case. Furthermore, analytical and simulation results are quite
close to each other, meaning that the overhead of our dis-
tributed algorithm keeping up the P2P connection is almost
minimal.

N = 100, dist
N = 200, dist
N = 100, local
N = 200, local

Load

A
ct

iv
e

co
m

p
u
te

rs

35302520151050

100

10

1

0.1

Fig. 5. Average number of active computers only for the download sharing
(DS) scenario (N = 100 and 200 homes). Thick lines denote simulation
results, thin lines denote the analytical model.

VI. CONCLUSION

In this paper we show how energy consumption of home
services can be reduced if homes share their resources amongst
each other. We presented the first prototype for sharing re-
sources called vPastry, being based on Pastry and KVM. Using
the prototype we have investigated the resource utilization
of the download sharing scenario, showing that CPU and
Memory are only lightly utilized. For the same scenario we
present simulation results for an advanced communication
model, which shows near optimal efficiency when compared
to an optimal analytical model.

Our future work will focus on implementing more and more
application types inside VMs, and the general usability of the
prototype, as well as simulation models for further scenarios.

REFERENCES

[1] P. Bertoldi and B. Atanasiu, “Electricity Consumption and Efficiency
Trends in the Enlarged European Union,” Institute for Environment and
Sustainability, European Commission Report EUR 22753 EN, Tech.
Rep., 2007.

[2] J. Koomey, “Estimating Total Power Consumption by Servers in the US
and the World,” Lawrence Berkeley National Laboratory and Stanford
University, Tech. Rep., 2007.

[3] IBM Virtualizatin View, “Virtualization Can Help Power Efficiency,”
http://www-03.ibm.com/
systems/virtualization/view/011607.html, January 2007.

[4] Intel white paper 30057701, “Wireless Intel SpeedStep Power Manager:
Optimizing Power Consumption for the Intel PXA27x Processor Fam-
ily,” 2004.

[5] Intel, “Energy Star* System Implementation,”
www.intel.com/cd/channel/reseller
/asmo-na/eng/339085.htm, 2007.

[6] C. Windeck, “Energy Star 4.0,” C’t German Magazine for Computer
Techniques, vol. Vol 14, pp. Pages 52–53, 2007.

[7] H. Hlavacs, K. Hummel, R. Weidlich, A. Houyou, A. Berl, and
H. de Meer, “Energy efficiency in future home environments: A dis-
tributed approach,” in IFIP TC6’s and IEEE’s 1 st Home Networking
Conference, Paris, France, December 2007.

[8] H. Hlavacs, K. Hummel, R. Weidlich, A. Houyou, and H. de Meer,
“Distributed energy efficiency in future home environments,” Annals of
Telecommunications, 2008, special Issue on Home Networks.

[9] M. Nowak and K. Sigmund, “The dynamics of indirect reciprocity,”
Journal of Theoretical Biology, vol. 194, no. 4, pp. 561–574, 1998.

[10] A. Garcia, A. Berl, K. Hummel, R. Weidlich, K. Hackbarth, H. de Meer,
and H. Hlavacs, “An economical cost model for fair resource sharing in
virtual home environments,” in Proceedings of the EuroNGI conference
2008, 2008.


