A Testbed for P2P Gaming using Time Warp

Stefan Tolic
University of Vienna, Dept. for Distributed and
Multimedia Systems
Lenaug. 2/8
Vienna, Austria
getraktna@gmail.com

ABSTRACT

Peer-to-peer based gaming is a new paradigm for distributed
multiplayer online gaming that has attracted attention in
the last years. It is known that P2P based topologies offer
good scaling properties and mitigate unfairness otherwise
observed for peers being far away and thus having large net-
work lags. However, removing inconsistencies for high paced
action games like FPS or tank battle games requires the im-
plementation of a Time Warp-like mechanism, which itself
may hinder gameplay for high lags. In this paper we present
a tank battle game named Panzer Battalion. Created from
scratch, this game follows the P2P approach and implements
Time Warp for removing inconsistencies. Panzer Battalion
is meant as a testbed for creating rollbacks and understand-
ing, how Time Warp rollbacks depend on network lag, and
how gameplay is altered by them.

Categories and Subject Descriptors

1.2.1 [Applications and Expert systems|: Games; C.2.1
[Network Architecture and Design|: Distributed Net-
works

General Terms
Keywords

Networked gaming, distributed simulation, Time Warp

1. INTRODUCTION

Multiplayer online games nowadays connect players from all
over the world. Often players from different continents play
together the same game. Due to the spacial distance, net-
work packet delivery might require a substantial amount
of time when sent from one player to another or to a cen-
tral server. Depending on the game type, this inherent net-
work lag (aka network latency) may then cause unfair condi-
tions [2, 6], or different views and game states which might
even contradict each other [27]. Contradicting game states
are also called inconsistencies. However, in case of low in-
teractivity, for instance for RTS or MMORPG games, net-

Helmut Hlavacs
University of Vienna, Dept. for Distributed and
Multimedia Systems
Lenaug. 2/8
Vienna, Austria
helmut.hlavacs@univie.ac.at

work lag does not necessarily have a strong effect on the
outcome [4, 7].

In this paper we introduce a testbed for observing the oc-
currence of inconsistencies and their removal when applying
Time Warp, which is described below. The testbed is a fast
paced tank battle game that was developed solely for this
purpose.

2. RELATED WORK

Basically there are three types of topologies for multiplayer
online games [5]. The simplest topology uses one central
server that solely simulates the game environment and stores
all game states.

Though being simplistic, this approach offers several draw-
backs. First, a centralized environment is likely to run into
performance problems, and scaling to hundreds or even thou-
sands of clients taking part in the same game is difficult. Sec-
ond and even more important, some players being far away
from the server will observe a high lag, and usually their
game input will arrive at the server much later than the one
of their opponents. Especially for highly interactive games
this means a considerable disadvantage, rendering the re-
sulting game to be unfair, even though schemes for selecting
the optimal hoster exist [8].

A more sophisticated approach would use N > 1 mirrored
game servers in order to divide the load implied by all clients
amongst the servers, and to move the replicated and loca-
tionally dispersed servers as close to the clients as possi-
ble [14, 3, 26]. Of course, being fixed in nature, servers re-
main in their locations and cannot dynamically move closer
to their clients.

Finally, no dedicated server provider may exist and hosting
the game is solely left to the clients. Especially in the recent
years this new peer-to-peer paradigm has been researched
extensively [25]. In a P2P topology, N > 1 clients, in this
case called peers, participate in a game and no dedicated
server exists. Scalability is provided by a principle called
locality of interest [20] or area of interest [24, 9]. Players are
located in a certain area in the virtual world and the player’s
peer only needs to communicate with peers having players
in the same area [13]. Splitting the virtual world in this way
results in so-called zomes [10]. A general problem of P2P
based systems is the difficult prevention of cheating [12].

Both mirrored servers and P2P approach, however, require
that N > 1 computers store parts of the game state in paral-
lel. One way of doing this is to define that each zone is simu-
lated by one server or peer only, acting as the central server
of this zone. This again yields the problem of lag differences
for different clients of the same zone. Another approach is
to fully replicate the game state amongst N server/peers.
For the P2P topology this means that parts or all peers of
a zone hold a full copy of the whole game state concerning
their zone, and game state updates must be communicated
to all other peers in the same zone. Since state updates are
delayed by the network, inconsistencies may occur and may
give rise to incorrect decisions [27].

In this paper we assume a P2P architecture with full repli-
cation for each zone, i.e., each peer of a zone simulates the
whole zone itself. We focus on fighting games like FPS or
tank battle games, with high interactivity and actions that
cause instant game state changes (like shooting). In such
fighting games, network lags may for instance lead to the
effect that on one peer a playing character is shot (because
the message making this player move was delayed by the
network), while on another peer the player is moved in time
and hence is not shot [21].

Basically there are three techniques to fight or at least mit-
igate the occurrence of inconsistencies. First, a technique
called Dead Reckoning applies prediction of object move-
ments, based on last known position and speed [22, 1]. In
the above example, the predictor would estimate the net-
work lag between the two peers and would estimate the po-
sition of each player at a given time. Dead Reckoning based
on synchronized clocks is then called Globally Synchronized
Dead Reckoning [1]. Although Dead Reckoning is able to re-
duce the number of occurring inconsistencies, it is not able
to remove them in case they actually occur. Since prediction
is never 100% accurate, and relies on suitable models, incon-
sistencies still may occur and lead to unwanted paradoxes.

Second, a technique called Local Lag puts each incoming
packet into a queue and delays it for a fixed pre-defined
time [17]. This way, packets arriving out-of-order may be
put in-order in the local buffer, and inconsistencies may be
removed. Local Lag only works efficiently in case the local
delay is larger than the largest network lag. Since packets
are always delayed, this technique is not usable for fast paced
action games with high interactivity, e.g., FPS games, which
are considered to be unplayable for latencies higher than
100 ms. However, Local Lag can actually be combined with
Dead Reckoning to achieve better results [28].

Finally, the only option to actually remove inconsistencies in

case they occur is given by a technique called Time Warp [16].

Time Warp is a technique well known in the area of paral-
lel and distributed discrete event simulation (PDES) [11].
In Time Warp, the virtual world is split between logical
processes (LPs), a generalization of peers simulating a dis-
tributed game. Each LP periodically stores a snapshot of its
entire (game) state. In case a peer observes an inconsistency
(because it received a straggler message from another peer),
it performs a rollback and restores the game state that was
observed right before the inconsistency time. In a way, the
time is rolled back into the past. A peer rolling back may

also decide that it sent messages to other peers in the past
that were based on wrong assumptions, and thus caused
inconsistencies there. In such a case the peer then sends
so-called null-messages (void-messages), causing rollbacks
on other peers. This may result in waves of null-messages
flooding the whole P2P system, and undoing lots of work
that was previously computed. Since peers by default sim-
ulate independently from each other, assuming that no in-
consistencies occur, Time Warp is also often called to be an
optimistic approach. In contrast, since Local Lag assumes
that always inconsistencies occur and thus delays every sin-
gle message, such approaches are also known as pessimistic
techniques.

In our work we focus on Time Warp like systems, and ask
how rollbacks and null-messages depend on network lag.
Time Warp has been studied extensively in PDES, and is
usually applied to a fully simulated system without real user
interaction. In the gaming domain, in [15] the authors built
a testbed based on Quake III, which was adapted to run
Time Warp. The authors used bots only, and relate the in-
fluence of network lag and the usage of different Local Lag
settings onto bot performance and Time Warp frequencies.
In [23] the authors adapted a well known tank battle game
called BZFlag" in order to evaluate a newly proposed hybrid
architecture between client-server and P2P, using a central
arbiter. They actually carried out experiments with real
users, as we did, but did not focus on Time Warp. In [19]
the authors adapted a simple third person capture-the-flag
game, and a Quake 2 clone to combine Local Lag and Time
Warp in a mirrored server setting.

The contribution of our work is as follows. We developed
a tank battle game called “Panzer Battalion” from scratch,
implementing high-quality graphics and control in order to
provide a realistic game feeling. The game is meant to be a
testbed for evaluating how rollbacks are created, depending
on network lag, number of players, and other parameters.
We explicitly focus on running experiments with real users,
here also deriving their subjective opinion on how rollbacks
influence the gaming experience.

3. PANZER BATTALION

The game “Panzer Battalion” was written for assessing Time
Warp for P2P type decentralized, fast paced games. It is a
surreal third person shooter, written in C4++ under Linux.
Players control a tank, collect power-ups and fight other
players. The implementation relies on OpenGL for render-
ing, SDL for threads, window management, input handling
and sound, DevIL? for image loading, arabica® for XML
parsing, and BSD sockets for network communication. The
graphics engine makes use of depth-fail stencil shadows, car-
toon shading, normal mapping and other various shader ef-
fects. Running it requires the availability of an NVIDIA
GPForce 6xxx or another graphics card which supports Frag-
ment Shader 3.0 or higher.

Figure 1 shows a screen shot of “Panzer Battalion”. Players
steer their own tank and roam through a plane. The tanks

"http:/ /bzflag.org/
http://openil.sourceforge.net/
3http://www.jezuk.co.uk/cgi-bin/view/arabica

Figure 1: “Panzer Battalion” screenshot.

can shoot at each other, and in contrast to BZFlags, shots
hit instantaneously, i.e., the velocity of a shell is infinite.
Additionally, the plane is full of obstacles that block the
view, and players can hide behind them. Figure 1 also shows
some power-ups that can be collected in order to up-level the
power of each tank. Power-ups include armor strengthening,
increasing the gun fire rate, the gun’s effectiveness, the en-
gine speed, and additional shields. On the other side there
are also booby-traps destroying a tank’s armor. Indeed each
power-up looks the same, and consuming them thus intro-
duces a momentum of surprise.

Tank movement, graphics, and the game physics have been
designed to be as realistic as possible in order to maximize
the gaming fun. We think that real experiments with real
human subjects need a game that maximizes the gaming
experience.

3.1 Message Handling

“Panzer Battalion” implements a fully decentralized network
topology based on the P2P paradigm. Each peer actually
simulates its own version of the entire virtual game world.
This means that the entire game logic is being interpreted
on every instance of the game, for the whole game. An-
other important point is that every instance communicates
with every other instance directly instead of using a central
server. Since each peer computes its own game version, no
player is having disadvantages because of high network lags.
On the other hand, as was pointed out previously, incon-
sistencies may occur and may cause different, contradicting
game states on different peers. The advantages of such a
system are, for one, a complete removal of a single point of
failure, meaning there is no game instance without which the
game would fail. Additionally, as instances interact directly,
we avoid the situation that certain players “far away” (large
round trip time) from the server cannot play the game due
to high lag. In “Panzer Battalion” however, while the inter-
action with players “near” to an instance would be smooth,
the interaction with others will suffer sufficient lag. Because
of this a situation might occur where different instances of
the game would have different game states. In order to fur-

ther discuss the problem in the next section the design of
“Panzer Battalion” is described.

3.2 Game Engine Design
The entire game logic is based on two message queues: the
inner and outer queue (see Figure 2).

Game Instance Game Instance

Game Logic Game Logic
Inner Queue Inner Queue
Outer Queue Network Outer Queue ~ Network

Figure 2: Flow of messages through the inner and
outer queues.

The inner queue is responsible for all the events relevant
to the game play itself. For example a message containing
the data for the move of a particular object is processed
in the inner queue. The outer message queue handles all
network based tasks, such as connecting, transmitting mes-
sages, clock synchronization etc. The meaning of “MQ” is to
emulate network latency (see Section 3.4). Every message
has a time stamp, and messages are ordered in ascending
order in the inner queue. The only messages that are sent
over the network are those containing the action of the tank
controlled by the player playing that particular instance of
the game. In case a tank does something, for instance move
or shoot, a message is put into the inner queue of the tank’s
game instance, and in case it is relevant to others, it is put
into the outer queue as well (and subsequently sent to ev-
ery other game instance). Upon receiving a message from
another peer, the message is first put into the outer queue.
From there it is passed on to the inner queue, where it is fi-
nally executed. The game logic, the rendering and input
handling is asynchronous with the inner queue and syn-
chronous with the outer queue. Table 1 shows the messages
that are sent between the different game instances (peers).

Message Interpretation
Move to location | A tank appears a certain location
Change angles Viewing direction of a tank

Shoot A tank shoots
Dead A tank broadcasts that it has died
Damage A tank receives damage

A dead tank comes back to life

Respawn

Table 1: Messages sent between peers.

In order to be able to determine inconsistencies, we syn-
chronize the computer clocks of the peers as accurately as
possible. This is done by using a protocol similar to the net-
work time protocol (NTP) [18]. Before sending a message,

the system time of a peer is determined by calling SDL Get-
Time(). This time stamp is then added to the message and
sent to other peers.

3.3 States, Inconsistencies and Rollbacks

We define an inconsistency as an occurrence of the follow-
ing situation: Assume that N > 1 peers send a number of
messages to each other, and that each message determines
an event that is applied a certain time stamp. Further as-
sume that time stamps are all different due to high resolu-
tion clocks. Due to this time stamp, all messages can be
ordered. At one particular peer the messages arrive at its
inner queue and are executed. Due to network latencies,
this execution of messages might not be done in the same
order, as imposed by the message time stamps. This out-of-
order execution leads then to a game state Si. Now assume
that executing the messages in-order would actually lead to
a game state S2. We say that an inconsistency has occurred

if Sy # Ss.

In order to remove inconsistencies, we implemented Time
Warp. “Panzer Battalion” records its entire game state ev-
ery 100ms. Figure 3 a) shows the inner queue of any game
instance. The execution pointer points to the next message
to be executed. The messages left to this pointer have al-
ready been executed, the messages to the right are yet to be
executed. At periodic time instances, the states are saved.

Execution Pointer
Saved State Saved State

Execution Pointer
Saved State Saved State
i-1 i i-1 i

A Late Message

a) b)
Execution Pointer

I Already executed messages

I Unexecuted messages

I Late messages

Savecli State Save(li State
i-1 i (now invalid)
)

Figure 3: A late message arrives and triggers a roll-
back.

Figure 3 b) shows the reception of a late message in the
inner queue. At this time point it is not known whether
this message would actually cause an inconsistency. The
game instance then decides to rollback to the saved state
before this straggler, in this case state S;_1 (see Figure 3
¢)). The execution pointer is set to the message right after
Si—1 and all messages after S;_1 are actually re-executed.
An example for a rollback and its possible consequences are
shown in Figures 4 and 5. First a tank A shoots another
tank B, destroying it as a result. However, shortly after a
rollback is carried out since the game instance of tank A

did not get a shoot message from B in time, stating that
actually B shot first. Upon arrival of this straggler, A is
forced to rollback, and tank A is destroyed by B’s shot.

Figure 4: Before a rollback: a tank A (left) shoots a
tank B (right).

Figure 5: After the rollback: Tank B shoots tank A.

A well-known problem of Time Warp is given by inconsis-
tencies on one peer causing inconsistencies on other peers.
Suppose that peer A sends a message m, and then later re-
ceives a late message m’ which contains an event that hap-
pened before that of m, and because of which m should not
have been sent. Peer A is now aware of this fact and car-
ries out a rollback, but since it already has sent m to all
other peers (and m should not have been sent), the other
peers already have received and executed m, leading to fur-
ther inconsistencies (see Figure 6 a)). The game instance
that received this late message now knows of this fact, but
of course other peers do not. The message m should never
have been transmitted. This problem is solved through im-
plementation of null-messages. These are messages saying
that a certain message should not have existed and was false.
In our previous example, after receiving m’, A transmits m

which voids the already sent message m. Any other instance
upon receiving of m (see Figure 3 b)) does a rollback, and
skips the execution on the message m that was voided, thus
synchronizing its state with the other instances (see Figure 3

).

Execution Pointer Execution Pointer

Saved State Saved State

Saved $tate Saved State i1 i
) i-

| i-1 i

I i H H
null-message null-message
a) b)
Execution Pointer

Already executed messages

Unexecuted messages

Null-message

BEOO@

Voided message

Saved State Saved State
i-1 i
)

Figure 6: A null-message arrives and triggers a roll-
back.

However rollbacks are rather expensive and should be avoided
as much as possible. Messages lagging only several millisec-
onds need not cause a time warp. In addition, a full time
warp may not always be desirable, even if it prevents a situa-
tion that should not have happened. As an example imagine
a situation, where a player A Kkills player B. However a roll-
back occurring a few seconds later shows that B actually
was supposed to survive the shot. A looses the frag and B
is warped back, most likely in the middle of the battle, only
to die again, which ends up being unpleasant for all players.

Even with rollbacks and null-messages it is hard to be certain
that the states in all instances are the same. Additional
measures that are used is that all messages should be self-
sufficient. This means that every message contains all the
data required to make the change in the game state without
depending on information not contained in the message. As
an example, a message bearing date of object translation
should not be implemented as: “translate object A by a
vector V", as the end result depends on the current state of
the object A. Instead the movement should be done as such:
“move object A to position P”. Another example would be
shooting. Instead of “the object A shot” a message looking
like “an object A positioned at P with rotation angle R
shot” is more appropriate. This ensures that if there was an
inconsistency in, say, a position of an object, after receiving
the next move message the inconsistency would be corrected.

3.4 Network Latency Emulation

In order to assess the effect of network latency in a decen-
tralized gaming scenario, “Panzer Battalion” implements an
artificial latency unit. Messages are delayed in a queue be-
tween the outer and inner queue, called middle queue (see

“MQ” in Figure 2). A message that should be moved from
outer to inner queue is temporarily stored in the middle
queue for some predefined time dt. This artificial lag can
be adjusted per game instance during gameplay. It must be
noted that the resulting behavior is actually different from
Local Lag, since during its stay in the middle queue, the
message is not seen by the inner queue, and hence not taken
into account when executing other messages.

It is interesting to note that the render loop consumes most
of the computing performance of the game, and itself intro-
duces a Local Lag. As a result, even if the emulated network
lag of the middle queue is set to dt = 0, several messages are
often passed from the middle queue to the inner queue at
once or in short successions, making them executed in the
same pass in the inner queue, and the inconsistencies caused
by them are fixed in a single rollback.

4. EXPERIMENTAL RESULTS

The experiments were held at our laboratory. We used sev-
eral Linux PCs interconnected by FastEthernet running at
30fps average. In these first experiments we aimed at find-
ing general dependencies of Time Warp rollbacks on network
latency. Second we wanted to examine the behavior of hu-
man players in a networked game with high latency in a
decentralized, P2P system using Time Warp. Both issues
are treated in the next two sections.

4.1 Rollbacks

In a first set of experiments in each experiment two persons
played against each other for five minutes. The network lag
in the middle queue was set to dt = 0,200,400 and 600 ms.
Each experiment was run two times, resulting in a total of
eight experiments. The games were run at 60 frames per
second on average. We recorded the number of rollbacks
that occurred within these 5 minutes, and the maximum
time a message had been late for each rollback.

Table 2 shows the average number of rollbacks that occurred
at each peer, depending on the emulated network lag. It can
be seen that this number first rises sharply, but decreases
after 200 ms. An explanation for this is provided below.

Lag (ms) | Average number of rollbacks
0 285
200 630
400 462
600 301

Table 2: Average number of rollbacks for different
lags.

In our experiments for each rollback we computed how late
each message causing the rollback was (a rollback can be
caused by more than one message), and for each rollback
recorded the maximum value of these times. Figures 7, 8,
and 9 show the histograms of these lateness values.

The first game shown in Figure 7 was recorded without any
artificial lag and caused on average 285 rollbacks per player.
Even if the artificial lag created by the middle queue was
set to dt = 0, inconsistencies occurred, for once due to the

render loop, and second, due to small offsets of the peer
clocks. As a result, over 50% of those rollbacks were caused
by messages late less then 50 ms, and nearly 90% less then
100 ms. It is interesting to note that in these experiments
the effects of rollbacks were not visible to the players.

160
140 F 1
120 | 1
100 ¢ 1
80 1
60 1
40 + 1
20 | 1

00~ 100 200 300 200 500 600

ms

Frequency

Figure 7: Number of rollbacks depending on how
late a message was (No Lag).

Figure 8 shows the rollback lateness distribution of the same
game with a 200ms lag. In five minutes there were 630
rollbacks per player on average. The players noted the game
at this point was somewhat irritating, and the effects of the
rollbacks were often visible. However, the game still was
acknowledged as being playable.

400

N W W
o Ut
o O
—
I

Frequency
= DN
ol O Ot
o O O
;
.

—
ar O
o O
—T

o

0 100 200 300 400 500 600
ms

Figure 8 Number of rollbacks depending on how
late a message was (200 ms lag).

Finally, Figure 9 shows the rollback lateness distribution in
the case of a 400 ms lag. There were 462 recorded rollbacks
per player on average, which is about 27% less than in the
200ms case. This is due to having many late messages ex-
ecuted in single a rollback, and also, as will be pointed out
in the next section, due to a change of tactics by the play-
ers, shifting from a dynamic to a more static gameplay. The
effects of rollbacks here were very annoying. Players stated
that the game in effect was no more playable.

In the 600ms case players were no more able to control
their gameplay. Rollbacks were actually clearly visible as
such. The gaming experience was disastrous, even though
the number of rollbacks decreased to the order of magnitude
of the zero lag case (see next section).

w
o
o

250 1

[\
o
o
T
L

—_

o

o
T

Frequency
—
ot
(=)
;
.

t
o
T

o

1
0 100 200 300 400 500 600

ms

Figure 9: Number of rollbacks depending on how
late a message was (400 ms lag).

4.2 Player Behavior

Another set of games were played in which the playing behav-
tor was monitored. In each experiment three players were
involved. The player input was recorded, and categorized
into two categories: dynamic and static. Dynamic includes
moving the tank, evading being shot, racing for power-ups
etc. Static input includes aiming and shooting enemies. The
games started with Oms lag, and during the game the lag
was constantly increased to the values 200, 400 and 600 ms.
Table 3 shows the percentage of dynamic vs. static input.

Lag (ms) | Dynamic (%) | Static (%)
0 59.3 40.67
200 48.9 51.0
400 26.4 73.5
600 21.0 78.9

Table 3: Dynamic vs. static.

The experiment shows that with the lag increase, tactics
started being more static. In the end when the lag was
around 600ms, for most cases the game could be broken
down to the following: a player would respawn, rush to the
killing ground, where the battles were fought over and over
again. Then he/she would stop and spend the rest of that
life aiming at and shooting other players, with minimal eva-
sion tactics. When asked about why this tactic was chosen,
players replied that it was getting hard to earn the frag,
and thus the general tactic was to prefer to be able to shoot
someone, and increase the risk of being shot yourself. Aim-
ing and assessing where the opponent actually is was more
difficult when moving, and thus movements were stopped.

In addition the players replied that it was getting hard to
guess the intentions of other players, and often realizing too
late that they were in danger. While this is partially due to
to the lag itself, players said that introducing a clearly visible
rollback often created confusion, for example it was harder to
keep track of one’s relative position to other players in short
distance battles. This was more visible with the local lag
being greater. Players first noticed this with the lag being
about 400 ms, and in games with artificial lag of 600 ms shot
distance, they tried to avoid fights at short distance.

5. CONCLUSIONS

In this paper we introduce “Panzer Battalion”, a testbed
for assessing the effects of rollbacks on gameplay in a tank
battle game, and how these rollbacks depend on network
conditions. We put considerable efforts into the development
of “Panzer Battalion”, in order to generate a realistic positive
gaming experience. Due to the development from scratch,
we were able to make important design decisions for our
testbed without being forced to alter third party source code.

In a first set of experiments we evaluated the effect of net-
work lag and rollbacks. We showed that for increasing net-
work lag, after reaching a maximum, the number of rollbacks
drops again, due to the fact that more and more messages
cause only one rollback.

We also showed how gamers change their behavior, away
from a dynamic to a more static behavior in case the network
lag grows too large. In general for large lags, Time Warp still
may provide consistency, but this comes with a price. The
game gets increasingly unplayable, and when using Time
Warp rollbacks too far into the past must be avoided.

6. REFERENCES

[1] S. Aggarwal, H. Banavar, A. Khandelwal,

S. Mukherjee, and S. Rangarajan. Accuracy in
dead-reckoning based distributed multi-player games.
In NetGames 2004, 2004.

[2] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The effects of loss and
latency on user performance in unreal tournament. In
NetGames 2004, 2004.
http://www.sigcomm.org/sigcomm2004/netgames.html.

[3] J. Brun, F. Safaei, and P. Boustead. Server topology
considerations in online games. In NetGames 2006,
2006.

[4] M. Claypool. The effect of latency on user
performance in real-time strategy games. Computer
Networks, 49(1):52-70, 2005. Special issue:
Networking issues in entertainment computing.

[5] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. In NetGames 2002, 2002.

[6] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors
affecting playersS performance and perception in
multiplayer games. In NetGames 2005, 2005.
http://www.research.ibm.com/netgames2005/.

[7] T. Fritsch, H. Ritter, and J. Schiller. The effect of
latency and network limitations on mmorpgs (a field
study of everquest2). In NetGames 2005, 2005.

[8] S. Gargolinski, C. S. Pierre, and M. Claypool. Game
server selection for multiple players. In NetGames
2005, 2005.
http://www.research.ibm.com/netgames2005/.

[9] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: A
scalable peer-to-peer network for virtual environments.
IEEE Network, 20(4):22— 31, 2006.

[10] T. limura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multiplayer online games. In NetGames 2004,
2004.

[11] D. R. Jefferson. Virtual time. ACM Transactions on

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

24]

(25]

[26]

27]

(28]

Programming Languages and Systems (TOPLAS),
7(3):404-425, 1985.

P. Kabus, W. W. Terpstra, M. Cilia, and A. P.
Buchmann. Addressing cheating in distributed
mmogs. In NetGames 2005, 2005.
http://www.research.ibm.com/netgames2005/.

B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In IEEE Infocom 2004, 2004.

K.-W. Lee, B.-J. Ko, and S. Calo. Adaptive server
selection for large scale interactive online games.
Computer Networks, 49(1):84-102, 2005. Special issue:
Networking issues in entertainment computing.

D. Liang and P. Boustead. Using local lag and
timewarp to improve performance for real life
multi-player online games. In NetGames 2006, 2006.
M. Mauve. How to keep a dead man from shooting. In
Proc. of the 7th International Workshop on Interactive
Distributed Multimedia Systems and
Telecommunication Services (IDMS) 2000, 2000.

M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and timewarp: Providing consistency for
replicated continuous applications. IEEFE transactions
on Multimedia, 6(1):47-57, 2004.

D. L. Mills. Network time protocol (version 3). RFC
1305, March 1992.

J. Miiller, A. Gossling, and S. Gorlatch. On
correctness of scalable multi-server state replication in
online games. In NetGames 2006, 2006.

K. L. Morse, L. Bic, and M. Dillencourt. Interest
management in large-scale virtual environments.
Presence: Teleoperators and Virtual Environments,
9(1):52-68, 2000.

W. Palant, C. Griwodz, and P. Halvorsen. Consistency
requirements in multiplayer online games. In
NetGames 2006, 2006.

L. Pantel and L. C. Wolf. On the suitability of dead
reckoning schemes for games. In NetGames 2002, 2002.
J. D. Pellegrino and C. Dovrolis. Bandwidth
requirement and consistency resolution latency in
multiplayer games. In NetGames 2003, 2003.

A. E. Rhalibi, M. Merabti, and Y. Shen. Aoim in
peer-to-peer multiplayer online games. In Proceedings
of the 2006 ACM SIGCHI international conference on
Advances in computer entertainment technology, 2006.
G. Schiele, R. Suselbeck, A. Wacker, J. Hahner,

C. Becker, and T. Weis. Requirements of
peer-to-peer-based massively multiplayer online
gaming. In Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and
the Grid (CCGRID 2007), pages 773-782, 2007.

S. D. Webb, S. Soh, and W. Lau. Enhanced mirrored
servers for network games. In NetGames 2007, 2007.
T. Yasui, Y. Ishibashi, and T. Tkedo. Influences of
network latency and packet loss on consistency in
networked racing games. In NetGames 2005, 2005.
http://www.research.ibm.com/netgames2005/.

Y. Zhang, L. Chen, and G. Chen. Globally
synchronized dead-reckoning with local lag for
continuous distributed multiplayer games. In
NetGames 2006, 2006.

