
Automatic Adaptation and Analysis of SIP

Headers Using Decision Trees

Andrea Hess and Michael Nussbaumer and Helmut Hlavacs and
Karin Anna Hummel

Department of Distributed and Multimedia Systems
University of Vienna, Austria

Lenaugasse 2/8, A-1080 Vienna
http://www.cs.univie.ac.at/

andrea.hess|karin.hummel|helmut.hlavacs@univie.ac.at,

michael.nussbaumer@ani.univie.ac.at

Abstract. Software implementing open standards like SIP evolves over
time, and often during the first years of deployment, products are either
immature or do not implement the whole standard but rather only a
subset. As a result, messages compliant to the standard are sometimes
wrongly rejected and communication fails. In this paper we describe a
novel approach called Babel-SIP for increasing the rate of acceptance for
SIP messages.
Babel-SIP is a filter that is put in front of a SIP parser and analyzes
incoming SIP messages. It gradually learns which messages are likely to
be accepted by the parser, and which are not. Those classified as proba-
bly rejected are then adapted such that the probability for acceptance is
increased. In a number of experiments we demonstrate that our filter is
able to drastically increase the acceptance rate of problematic SIP REG-
ISTER and INVITE messages. Additionally we show that our approach
can be used to analyze the faulty behavior of a SIP parser by using the
generated decision trees.

Keywords: Protocol adaptation, decision tree based learning, SIP

1 Introduction

One of the success factors of the Internet and of many of its applications is the
openness of its protocols. Thousands of protocols are described in the form of re-
quest for comment (RFC), some being simple and described by one single RFC,
some being spread over several RFCs, where each RFC might either describe
one important aspect of the protocol, or even comprise a suit of closely related
protocols rather than one single protocol. Due to the complexity of many proto-
cols, it is often not possible to create suitable protocol stacks from scratch which
implement the open standards completely and flawlessly right from the start.
Rather, it is often better to first implement a subset of the most important fea-
tures of a protocol, then before shipping the product, to try to run as many test



2

runs as possible for debugging. After the first release, software producers then
try to gradually implement missing features and continuously run debugging
and compatibility tests. Since many companies develop their products like this,
and also since many complex standards do leave some questions unanswered, it
regularly may happen that devices adhering to the same protocol standard are
unable to communicate with each other.

Consider SIP [1] for instance, which will be introduced in more detail in
Section 3. SIP is a protocol for call session establishment and management, on
which voice over IP (VoIP), for instance, is based. It is thus the glue binding
together phones on the one side, and telephone infrastructure like proxy servers
on the other side. Due to the multitude of products around SIP, in the recent
years, many incompatibilities between phones and proxies have been observed
(despite events like SIPit1). For testing compatibility, commercial VoIP proxy
vendors usually purchase a set of hard and soft phones, and then test them
against their product (of course many other software and conformance tests are
run as well). Together with the proxy software, vendors then often specify a
list of hard phones or soft phones which are known to work with their product.
Proxy customers are in turn advised to use phones from this list. For instance,
for the commercial proxy considered in this work, during the recent versions,
several hard phones were known which would not be able to register themselves
to the proxy. In case incompatibilities arise, proxy customers usually must wait
until the proxy vendor acknowledges and removes the observed incompatibilities
in the next patch or proxy release, something which might take weeks or even
months.

In the long run, products get more and more robust, and compatibility issues
are gradually removed. However, in the transient phase of initial deployment,
usually during the first years of a newly proposed protocol, such incompatibilities
may cause a lot of despair.

In this paper we present Babel-SIP, a novel SIP translator that is able to
improve the situation significantly. Babel-SIP can be plugged in front of a proxy,
and automatically analyzes incoming SIP messages. It gradually learns, which
kind of SIP messages are likely to be accepted by the proxy SIP parser, and
which are likely to be rejected because of the above described incompatibilities.
The same learning concept can then be used to pro-actively adapt incoming SIP
messages which are likely to cause trouble in such a way that the new version of
the SIP message is likely to be accepted by the SIP parser.

We consider our approach to be generic in the sense that it is not necessarily
restricted to be used for SIP. Rather, it is thinkable to construct other versions
of Babel-SIP for newly proposed protocols in order to improve transient phases
for newly deployed products.

1 http://www.cs.columbia.edu/sip/sipit/



3

2 Related Work

Since protocols are either proprietary or standardized, using autonomous self-
adapting parsers based on machine learning techniques is not as widespread as in
other domains such as robotics, natural language classification, node and network
utilization including estimates of future utilization, and intrusion detection.

Decision trees, and in particular the used C4.5 tree, allow to classify arbitrary
entities or objects which can be used, for instance for computer vision (applied
to robotics) [2] or characterization of computer resource usage [3]. In [2] decision
trees were used for learning about the visual environment which was modeled
in terms of simple and complex attributes and successfully implemented for
improving recognition possibilities of Sony Aibo robots (e.g., the surface area or
angles). Decision trees which use further linear regression have been proposed
for the characterization of computer resource usage in [3]. Parameters like the
CPU, I/O, and memory were used as attributes and the classification tree was
finally used to successfully determine anomalies of the system’s parameters. The
authors claim that finding the trade-off between accurate history knowledge and
time-consuming training was a major concern.

In [4] intrusion detection was introduced based on a combination of pattern
matching and decision tree-based protocol analysis. This tree-based approach
allows to adapt to new attack types and forms while the traditional patterns are
integrated into the tree and benefit from refinement of crucial parameters. All
presented decision tree based approaches are similar to our approach and are
mentioned to motivate the potential for protocol analysis and message classifi-
cation.

In the application area of VoIP and SIP, authors both investigate traffic be-
havior and failures in particular software implementations. In [5] the authors
describe the need and their solution for profiling SIP-based VoIP traffic (pro-
tocol behavior) to automatically detect anomalies. They demonstrate that SIP
traffic can be modeled well with their profiling and that anomalies could be
detected. In [6] it is argued, that based on the SIP specification, a formal test-
ing of an open source and a commercial SIP proxy lead to errors with the SIP
registrar. Both findings are encouraging to propose a method for not only detect-
ing incompatibilities and testing SIP proxies, but further to provide a solution
for messages rejected due to slightly different interpretations of the standard or
software faults.

In [7] a stateful fuzzer was used to test the SIP compatibility of User Agents
and proxies by sending different (faulty) messages both in terms of syntax and
in terms of protocol behavior. The idea here is only to find weaknesses in the
parser implementation, without trying to adapt messages online. The work clos-
est to our approach is presented in [8]. In this approach, incoming and outgoing
SIP messages of a proxy are analyzed by an in-kernel Linux classification en-
gine. Hereby, a rule-based approach is proposed, where the rules are pre-defined
(static). Our approach extends this classification by proposing a generalizable
solution capable of learning. Additionally, we propose the novel approach of
autonomic adaptation and evaluate it.



4

3 Background: The Session Initiation Protocol

The Session Initiation Protocol (SIP) is gradually becoming a key protocol
for many application areas, such as voice over IP, or general session manage-
ment of the Internet Multimedia Subsystem (IMS) of Next Generation Net-
works (NGNs). Its functions target (i) user location, (ii) user availability, (iii)
user capabilities, (iv) session setup, and (v) session management. The core SIP
functionality is defined in RFC 3261 [1] but several other RFCs define different
additional aspects of SIP, like reliability [9], interaction with DNS [10], events and
notifications [11], referring [12], updating [13], call flow examples for VoIP [14],
and PSTN [15], QoS and authorization [16], privacy [17], security [18], and many
more.

In the context of VoIP, SIP is responsible for the whole user localization
and call management. On behalf of a user, a User Agent (UA), typically a hard
phone on the desk, or a soft phone running on some PC, sends REGISTER
messages to a local registrar (server). The messages contain the ID of the user
and the IP address of the UA. The registrar then updates the received locality
information in yet another server called location server, which from this time on
knows the address a certain user can be reached at (see Figure 1). RFC 3261

Fig. 1. Bob’s UA registers Bob’s location at the local registrar/proxy.

defines that only certain header fields are necessary for a SIP message to work
properly, but of course there are many optional header fields that can be used
by a VoIP phone within a SIP message as well. According to RFC 3261, a SIP
REGISTER message has to contain a request line and the header fields To,
From, Call-ID and CSeq (see Figure 2). Furthermore, SIP requests like INVITE
messages additionally have to contain the header fields Max-Forwards and Via

(see Figure 4).

REGISTER sip:Domain SIP/2.0

To: <sip:UserID@Domain>

From: <sip:UserID@Domain>

Call-ID: NDYzYzMwNjJhMDRjYTFj

CSeq: 1 REGISTER

Fig. 2. A typical SIP REGISTER message.



5

Handling calls is then the task of a so-called proxy server, which also should
be installed locally at each site. Calls are initiated by sending INVITE messages.
A call from user Alice registered at site atlanta.com to user Bob registered at
site biloxy.com is usually done by specifying a SIP URI like bob@biloxy.com.
Alice’s UA then sends a SIP INVITE message to her local proxy atlanta.com,
which then forwards the INVITE to Bob’s proxy biloxy.com, which subsequently
asks the local location server where to find Bob’s UA. In case Bob’s UA has
been registered previously, the proxy at biloxy.com forwards the INVITE to
Bob’s UA, which then may continue to initiate the session. Figure 3 shows this
forwarding of INVITE messages, the rest of the messages necessary to establish
a call, i.e., “180 RINGING”, “200 OK”, and “ACK” are not shown here. Often,

Fig. 3. Alice tries to setup a call to Bob.

instead of installing physically three different servers, it suffices to integrate the
functionality of registrar, location server, and proxy into one server, the local
proxy, which we will assume here. In particular, we assume that there is only
one single SIP parser responsible for registration and call management.

INVITE sip:CalleeUserID@CalleeDomain SIP/2.0

To: <sip:CalleeUserID@CalleeDomain>

From: <sip:CallerUserID@CallerDomain>

Via: SIP/2.0/UDP IPAdress:Port

Call-ID: NDYzYzMwNjJhMDRjYTFj

CSeq: 1 INVITE

Max-Forwards: 70

Fig. 4. A typical SIP INVITE message.



6

4 Autonomic SIP Adaptation

Standardization of network protocols enables interconnection, however, the prin-
ciple problem with open protocols lies in the degree of freedom allowed causing
different protocol dialects in practice. These small differences in the messages’
header information might lead to incompatibilities between implementations of
different vendors and organizations, a problem that is usually gradually solved
over a time period of years.

We attack the problem of transient incompatibilities by introducing a self-
learning module which can be added to arbitrary proxies. The purpose of this
module is twofold: first, the module should classify an incoming message by
analyzing its header information in order to predict a rejection by the proxy
and, second, the module suggests an adaptation of the header information which
should finally force the acceptance of the message.

4.1 C4.5 Decision Trees

For classification, we use a C4.5 decision tree [19] capable of further identifying
relevant header parameters causing rejections. Additionally, further properties of
C4.5 trees seem to be desirable, like avoiding over-fitting of the tree and dealing
with incomplete data. After a training phase, new messages can then be classified
into messages that are likely to be rejected or accepted. The C4.5 decision tree
implementation (J48) used is based on the Weka machine learning library [20].
All headers, header fields, and standard values (as defined by RFC 3261) are
defined as attributes. For each attribute a numerical value is defined to describe
a SIP message (274 attributes per message) as shown in the algorithm depicted
in Figure 5. It must be noted that the result is a vector of dimension d = 274,
vector components are 0 if the corresponding header/header field is not present,
1 if the header/header field is present and of type string (but 0 if the header
format is incorrect), and any numeric value if the header/header field is present
and of numeric type. For the current implementation, this information is stored
in the format ARFF (Attribute Relation File Format).

Input: attribute vector A

Output: attribute vector A with new values

FOREACH (Ai in A)

Ai.value = 0

IF (Ai.name in SIP message) THEN

IF (SIP message field is numeric) THEN

Ai.value = value of SIP message field

ELSE Ai.value = 1

Fig. 5. Translation of SIP header into C4.5 attribute values.



7

Figure 6 shows an example tree generated by the training with SIP REGIS-
TER messages. The tree actually represents a hierarchy of nested if-then rules
each SIP message is tested against. The leaves of the tree represent the tree clas-
sification decision, in this case either ACCEPTED or REJECTED. For example,
if the header field Replaces is in the SIP message (rule “Replaces > 0”), the mes-
sage is classified as rejected. The rule hierarchy that was learned also shows the
importance of the message’s parameters for the final acceptance / rejection of
the message, with important rules being at the top of the rule hierarchy. The
numbers calculated for the tree leaves correspond to the number of messages
which have been classified in this branch (the second number shows the number
of wrong classifications in case they exist).

Replaces <= 0

| Allow_DO <= 0

| | Content-Language <= 0

| | | Contact_methods <= 0

| | | | To_user <= 0: ACCEPTED (112.0/5.0)

| | | | To_user > 0

| | | | | Contact_q <= 0

| | | | | | Call-ID <= 0: REJECTED (2.0)

| | | | | | Call-ID > 0: ACCEPTED (12.0/1.0)

| | | | | Contact_q > 0: REJECTED (2.0)

| | | Contact_methods > 0

| | | | Accept <= 0: REJECTED (6.0/1.0)

| | | | Accept > 0: ACCEPTED (11.0/1.0)

| | Content-Language > 0

| | | Contact_flow-id <= 0: REJECTED (6.0/1.0)

| | | Contact_flow-id > 0: ACCEPTED (2.0)

| Allow_DO > 0

| | Allow-Events_talk <= 0: REJECTED (6.0)

| | Allow-Events_talk > 0: ACCEPTED (3.0/1.0)

Replaces > 0: REJECTED (11.0)

Fig. 6. Example C4.5 tree after training with SIP REGISTER messages.

4.2 Babel-SIP

Babel-SIP is an automatic protocol adapter and is placed between the proxy
socket that accepts the incoming messages, and the registrar’s or proxy’s SIP
parser (see Figures 7 and 8). Babel-SIP maintains a C4.5 decision tree, and
observes which messages are accepted by the proxy, and which are not. This
information is fed into the decision tree, the tree thus learns which headers are
likely to cause trouble for this particular release of the proxy software.



8

Fig. 7. Babel-SIP adapts incoming REGISTER messages and passes them on to a
registrar.

Fig. 8. Babel-SIP adapts incoming INVITE messages and passes them on to the proxy.

Once the tree has been trained, by using the same decision tree, incoming
messages are then automatically classified as either probably accepted or prob-
ably rejected. Of course, at this stage, Babel-SIP does not know this for sure.
However, once a message is classified to be probably rejected by the proxy parser,
Babel-SIP tries to adapt SIP messages in such a way that the result turns into
a probably accept.

Babel-SIP stores messages that have been accepted previously by the proxy
in a local database M . Once a SIP message m1 has been classified as probably
rejected, Babel-SIP searches through its database for the message mc being
closest to m1. For estimating the distance between two SIP messages m1 and
m2, we use the standard Euclidean distance metric d(m1, m2) provided by Weka
(on normalized versions of the vectors). The sought for message mc is thus given
by

mc = arg min
mi∈M∧mi 6=m1

d(m1, mi).

Babel-SIP then identifies those headers of m1 which are classified as being
problematic. This information is again derived from the decision tree. If the
same header/header field is found in mc then the according header/header



9

field/values of mc are copied into m1, thus replacing the previous information.
If the header/header field is not found in mc, it is erased from m1. Furthermore,
Babel-SIP identifies those headers and header fields of mc which are not used in
m1, and inserts them into m1. The result is a new message version m̂1, which is
then forwarded to the proxy.

At this point it must be noted that it is self-evident that such an approach
must be done with care. In a real production system it is mandatory that the
appropriate semantics of the different headers are also taken into account which
we have not addressed so far. Rather, the aim of this work is to evaluate whether
our approach based on observing and learning is able to achieve an improved
rate of message acceptance or not. In our follow-up work we will thus focus on
creating appropriate rules for semantics-aware header translation.

5 Experiments and Results

In our lab we installed several popular hard and soft phones and ran experiments
using a commercial proxy server created by a major Austrian telecom equipment
provider. At the time of our research, this commercial proxy was guaranteed to
work with only two different types of VoIP hard phones and only one type of
VoIP soft phone. For all other phones the company did not guarantee that the
phones would work with their SIP proxy, although mostly they did.

Our research in this work primarily focuses on the REGISTER and INVITE
messages. In the initial phase we aimed at finding out how compatible our proxy
is with respect to different versions of REGISTER messages. In the second phase
we concentrated on probably the most important SIP message, the INVITE
message. In our experiments we found a multitude of different SIP headers used
by different phones, so our first step was to find out what kind of REGISTER
and INVITE messages the different types of VoIP phones send. We therefore
monitored REGISTER and INVITE messages from nine popular VoIP hard
phones and five popular VoIP soft phones (see Table 1).

After these first experiments we found out that the SIP messages can indeed
be very different. For example: one hard phone A uses less than 10 header fields
in its SIP REGISTER message, another hard phone B uses 15 header fields in
its SIP REGISTER message, and both phones use different header fields as well.

5.1 Initial SIP Messages

In order to obtain a substantial amount of possible REGISTER and INVITE
messages for testing our proxy, we decided to artificially create different SIP
messages. The newly generated messages were random combinations of the ob-
served SIP header fields, header field values, and header field parameters from
the investigated real phones, as well as others taken from RFC 3261.

For both REGISTER and INVITE messages we generated a set of the 53
most often used SIP header fields found in the observed SIP messages. For these
53 header fields we defined 145 header field values and header field parameters.



10

Table 1. Hard and soft phones analyzed for our experiments.

Hard Phones Snom 300

Polycom SoundPoint IP 330

Linksys SPA IP Phone SPA 941

DLink VoIP IP-Phone DPH-120S

Thomson ST2030

Allnet 7950 (Sipgate)

Grandstream GXP2000

Enterprise IP Phone

Elmeg IP 290

Siemens

Soft Phones X-Lite

PortSIP

BOL

Express Talk

3CX

In the next step we generated different SIP REGISTER and INVITE messages
using these 145 header field values. The basic idea was to generate a large amount
of different messages with many different parameter combinations. We therefore
defined a probability for each of the 145 different header fields, the probability
values were computed from the previously observed SIP messages sniffed from
the real phones. Furthermore we developed a Java program that continuously
sends either REGISTER or INVITE messages to the proxy, the messages being
created randomly by choosing a subset of the 145 header field values according
to their probabilities.

In our experiments we generated 344 different SIP REGISTER messages and
122 different SIP INVITE messages. For each SIP REGISTER message we de-
termined whether the register process was successful, i.e., whether the client
received a “200 OK” reply, or not. If it was successful we marked the message as
accepted, otherwise we marked it as rejected. Out of the 344 REGISTER mes-
sages, 78 (or approximately 22.67%) were marked as rejected, as it turned out,
mostly because of incomplete header information. For each SIP INVITE message
we determined whether the call setup was successful and the INVITE message
was successfully sent to the called party, i.e., whether the client received a “180
Ringing” reply, or not. Again, if it was successful we marked the message as
accepted, otherwise we marked it as rejected. Out of the 122 INVITE messages,
69 (or approximately 56.56%) were marked as being rejected.



11

5.2 Rejected Messages

We ran several experiments in our lab to evaluate the effectiveness of Babel-SIP,
which is measured by the improvement of acceptance of previously not accepted
SIP messages. These experiments were carried out separately for REGISTER
and INVITE messages.

REGISTER Messages Initially, a C4.5 decision tree was built from the train-

ing data set composed of 50 messages (of which 22% are known to be rejected)
randomly selected from the artificial messages generated. This initial tree clas-
sifies 90% of the training data set correctly.

Then we ran a set of experiments, consisting of 15 replicated experimental
runs. In each run we sent a total of 4400 messages to Babel-SIP, chosen at random
from the set of 294 test messages. Here, 22.79% of the test data messages were
known to be rejected by the proxy. The partitioning of messages into a training
and test set is shown in Table 2.

Table 2. Initial training and test data sets.

REGISTER messages

Training data set Accepted messages 39 78%

Rejected messages 11 22%

Total number 50

Test data set Accepted messages 227 77.21%

Rejected messages 67 22.79%

Total number 294

INVITE messages

Training data set Accepted messages 9 45%

Rejected messages 11 55%

Total number 20

Test data set Accepted messages 44 43.14%

Rejected messages 58 56.86%

Total number 102

Since training is very resource consuming, we further decided that the deci-
sion tree is not trained after each single message. Rather, the results of a batch of
20 consecutive REGISTER messages were used to train the decision tree, which
as a result gradually adapted to the acceptance behavior of the proxy.

For each message we recorded whether it was accepted or not. The 15 ex-
periments thus resulted in 15 time series of 4400 binary observations (yes or
no). For each experiment l, 1 ≤ l ≤ 15 we then calculated rejection rates over



12

overlapping bins of size 100 messages. The first bin Bl
1

= {ml
i | 1 ≤ i ≤ 100}

includes messages 1 to 100, the rejected messages of this bin are given by
B̂l

1 = {ml
i ∈ Bl

1 |m
l
i was rejected}. Bl

2 and B̂l
2 are then computed over mes-

sages 21 to 120 from experiment l. In general, for 1 ≤ k ≤ 216 we define

Bl
k = {ml

i | 20 × (k − 1) + 1 ≤ i ≤ 20 × (k − 1) + 100}

and
B̂l

k = {ml
i ∈ Bl

k |m
l
i was rejected}.

Thus, an estimator R̂l(i) for the rejection rate (in %) around message ml
i, 1 ≤

i ≤ 4400 is given by

R̂l(i) = 100 × |B̂l
di/20e|/|B

l
di/20e| = |B̂l

di/20e|.

Figure 9 shows a smoothened curve of the estimated rejection rate. By using

Stationary mean
CI90
R̄(i)

Message

M
ea

n
an

d
C

I9
0

[%
]

40003000200010000

22

20

18

16

14

12

10

8

Fig. 9. Mean estimated rejection rate R̄(i) and 90% confidence interval (CI90) for mes-
sage i. R̄(i) is calculated over all 15 REGISTER experiments and each bin. Stationary
mean is the overall mean for messages m

l

600 to m
l

4400.

B̄k =

(

15
∑

l=1

|B̂l
k|

)

/15, 1 ≤ k ≤ 216, (1)

we define a mean estimator by

R̄(i) = B̄di/20e,

i.e., the mean is calculated for each bin over all 15 experimental runs. In Figure 9
it can be seen that the time series shows a transient phase at the start, in



13

which the rejection rate decreases. In this phase, Babel-SIP gradually learns and
increases its effectiveness. The series then enters a stationary phase, in which no
more gain is achieved, i.e., Babel-SIP has seen all possible messages. We have
additionally computed the mean rejection rate Rs ≈ 13.12% for messages in this
stationary phase, taking into account only messages ml

600 to ml
4400 (Stationary

mean). This rejection rate is the main result of Babel-SIP: when sending our test
data to the commercial proxy, the application of Babel-SIP is able to decrease
the rejection rate from 22.79% to 13.12%, i.e., the rejection rate on average is
decreased by over 42%.

Table 3 shows aggregated results over all 15 experiments in more detail.
Modified denotes the percentage of modified messages in relation to all messages.
Successfully modified denotes those messages that were turned from a rejected
into an accepted message by Babel-SIP. This statistic is given one time in relation
to all messages, and one time in relation only to those messages that have been
classified as rejected. This number is the number of rejected messages minus the
number of false negatives, plus the number of false positives. The false positives
are those that were classified as rejected, although they were not. False negatives
are those messages that were classified as accepted although they were not. For
these statistics the table shows the mean over all 15 runs, as well as the standard
deviation between the individual runs and this mean. The standard deviations
are very small, and thus on the aggregate level, all 15 experiments show almost
equal results.

Table 3. Aggregated results of Babel-SIP experiments.

REGISTER messages Mean [%] Std.dev. [%]

Modified 18.37 5.8310−4

Successfully modified
(from all) 9.33 0.003

Successfully modified (of
those classified as rejected) 48.02 0.108

False positive 6.13 2.04110−4

False negative 10.53 4.23310−4

INVITE messages Mean [%] Std.dev. [%]

Modified 38.24 0

Successfully modified
(from all) 22.39 1.210

Successfully modified (of
those classified as rejected) 58.55 3.165

False positive 6.86 0

False negative 23.53 0



14

INVITE Messages The experiments to validate our approach on INVITE
messages were performed similarly to the REGISTER experiments. The initial
C4.5 tree built from the training data set sorts all 20 training messages cor-
rectly into accepted and rejected ones. In each of the 15 experimental runs, 1000
INVITE messages were randomly selected from the test data set and sent to
Babel-SIP. 56.86% of the test messages (see Table 2) are known not to be ac-
cepted by the SIP proxy. The decision tree used to predict whether an incoming
message will be accepted was again updated after every 20 messages that were
sent to the proxy. The rejection rates R̂l(i) for two experiments are shown in
Figure 10.

For the 15 INVITE experiments we again computed a mean estimator R̄(i)
and the 90% confidence interval, as well as an estimator for the stationary rejec-
tion rate (see Figure 11). For the latter we used messages ml

560 to ml
1000. This

stationary rejection rate turned out to be 30.79%. When compared to the initial
rejection rate of 56.86%, this is an improvement of 45.85%.

Exp. 10
Exp. 3

Message

R
ej

ec
te

d
IN

V
IT

E
m

es
sa

ge
s

[%
]

1000900800700600500400300200100

50

45

40

35

30

25

20

Fig. 10. Estimated rejection rates R̂
l(i) for two INVITE experiments.

Details on the modified and incorrectly classified messages in all 15 experi-
mental runs are given in Table 3. The number of messages wrongly classified as
rejected (false positives) is as high as in the REGISTER experiments, whereas
the number of those wrongly classified as accepted (false negatives) has strongly
increased. Thus, it can be said that the decision tree classifying the INVITE
headers is not as accurate in distinguishing the rejected headers from the ac-
cepted headers as the tree resulting from the REGISTER experiments.

Another interesting observation is the observed zero standard deviation in the
percentage of messages classified as rejected and, subsequently, modified over all
15 experimental runs. As a result, it seems that the trees classified all messages
equally although the messages were selected in a random sequence for each run



15

Stationary mean
CI90
R̄(i)

Message

M
ea

n
an

d
C

I9
0

[%
]

1000900800700600500400300200100

42

40

38

36

34

32

30

28

26

Fig. 11. Mean estimated rejection rate R̄(i) and 90% confidence interval (CI90) for
message i. R̄(i) is calculated over all 15 INVITE experiments and each bin. Stationary
mean is the overall mean for messages m

l

560 to m
l

1000.

and each tree should thus learn some faulty parameters earlier and some later
than trees in other runs. However, in the REGISTER experiments the observed
variances for the same statistic were also quite small, and it must be noted that
in the REGISTER experiments both a much larger test message pool (294 vs.
102) and much longer experimental sequences (4400 vs. 1000) were used.

5.3 Retries

Since the basic hypothesis of Babel-SIP is that even phones which initially fail
to contact the SIP proxy, after retrying a number of times, eventually may
succeed because of Babel-SIP learning and transformation, we have analyzed the
number of attempts that are necessary for succeeding. For this, we ran separated
REGISTER and INVITE experiments with our training and test data sets (see
Table 2). Each experiment was driven by a parameter r, stating the maximum
number of times a phone would try to register itself or to call another phone.
Babel-SIP was again trained before the experiments were started by sending the
test data. In the case that the phone had not succeeded within these tries, it
was counted as “never”. For each of the 67 REGISTER respectively 58 INVITE
messages of initially rejected test messages we recorded the number of messages
necessary for registering and inviting.

Table 4 shows the number of necessary tries up to that value of r from which
onwards no improvement of the number of accepted messages was achieved. The
results reveal that for those phones that would need more than one try, most
of them would succeed after at most four tries. Mapping this onto a realistic
scenario, this means that a phone owner would have to attempt to register his
phone or to initiate a call only a few times, if he would be willing to wait



16

between the tries for some time. In addition, it was noticed that the number
of accepted messages among the previously rejected ones did not increase if the
phones repeatedly attempt to register more than 9 times or to start a call more
than 4 times.

Table 4. Number of necessary attempts for experiment r.

# REGISTERs 1 2 3 4 ≥ 5 never

r = 1 10 57

r = 2 14 8 45

r = 3 14 12 3 38

r = 4 21 5 3 1 37

r = 5 17 7 5 2 0 36

r = 6 16 13 2 0 0 36

r = 7 19 9 1 2 0 36

r = 8 16 5 7 2 1 36

r = 9 18 7 5 2 0 35

# INVITEs 1 2 3 ≥ 4 never

r = 1 22 36

r = 2 25 3 30

r = 3 21 5 2 30

r = 4 25 1 5 1 26

5.4 Rejection of Previously Accepted Messages

An important evaluation criterion is given by the question, whether Babel-SIP
actually may wrongly classify a message m as probably rejected, while in reality
the message would be accepted, and would change it in a way that the new
version m̂ would be actually rejected. Such a behavior is regarded as being
unacceptable, since proxy providers provide a list of evaluated UAs to their
customers. A translation component with such an erroneous behavior would
nullify any such guarantee.

As a consequence, we ran additional experiments and added the SIP messages
from 9 hard phones and 5 soft phones to the pool of our test data. The phone
messages were known to be accepted by the proxy. There was not a single instant
that any of these real phone messages were altered and subsequently rejected by
the proxy. The same is true for all REGISTER and INVITE test messages from
the accepted pool. At least our experiments with the given proxy showed that
Babel-SIP indeed shows a stable behavior, and tends to change only messages
which are problematic, but does not alter already accepted messages in such a
way that they subsequently would be rejected.



17

6 Qualitative Analysis of Decision Trees

Since the C4.5 decision tree contains a summary of the SIP parser behavior,
it also can be used as a hint for the proxy programmers to find bugs in their
implementation. This will be demonstrated in the following sections.

6.1 REGISTER Messages

As mentioned above, after the initial training with 50 REGISTER messages the
C4.5 tree is able to classify 90% of the messages correctly.

After 70 REGISTER messages, i.e., the initial training (50 messages) plus one
more training (20 more messages), the resulting tree is quite small, containing
only five rules which decide whether an incoming message is classified as accepted
or rejected (see Figure 12). Looking at this tree, a programmer can already see
important hints explaining failures of his SIP parser. The accuracy of this tree
is already 91.43%.

Event_message-summary <= 0

| Error-Info <= 0

| | Contact_transport <= 0: ACCEPTED (52.0/4.0)

| | Contact_transport > 0

| | | Via_rport <= 0: REJECTED (2.0)

| | | Via_rport > 0: ACCEPTED (8.0/1.0)

| Error-Info > 0

| | Allow-Events_presence <= 0: REJECTED (2.0)

| | Allow-Events_presence > 0: ACCEPTED (2.0)

Event_message-summary > 0: REJECTED (4.0/1.0)

Fig. 12. Example C4.5 tree after training with 70 REGISTER messages.

Looking at the C4.5 decision tree derived at the end of the experiments (see
Figure 13) the tree gets quite large, thus using this tree for analysis imposes
more work to the programmer. On the other hand, its classification accuracy is
increased to 99.32%. Thus, it can be assumed that this tree indeed sufficiently ex-
plains registration failures without knowing anything about the implementation
details.

Because the final tree is quite large, for readability reasons, Figure 13 shows
just the parts containing the most important rules as outcome of our experi-
ments. As mentioned in Section 5, the developed Java client creates artificial
messages, and each of the 145 header fields/values is included only according to
some preset probability. Therefore it is possible that important header fields or
header field values are not used, and some messages do not contain all manda-
tory header fields as demanded by RFC 3261. We thus investigate whether the
decision tree can be used to understand why the parser rejected many of the
rejected messages.



18

In the decision tree depicted in Figure 13, the first rule indicates that a SIP
REGISTER message has to contain the header field CSeq (which actually is
mandatory as described in RFC 3261). If an incoming message does not contain
a CSeq header field it is very likely to be rejected, otherwise the next rule has
to be checked. Since the tree represents a hierarchy of rules, the tree can be
traversed from top to bottom, or vice versa. When checking the C4.5 tree from
top to bottom, the next rule indicates that a SIP message has to contain the
header field Call-ID, again according to RFC 3261. We conclude that checking
the decision tree from top to bottom results in precise hints about the critical
header fields. Of course as the tree gets larger there are more and more branches
and rules to be checked, therefore sometimes after the first quick check from
top to bottom it makes sense to check the tree from bottom to top. In most
cases it comes down to a final rule that indicates whether a message is likely to
be accepted or rejected. Figure 13 shows that the Via header field parameter
rport is such a final decision rule. This means that at a specific condition set by
previous rules, the rport parameter of the Via header is mandatory for a SIP
REGISTER message to work properly. Checking the decision tree from top to

CSeq <= 0: REJECTED (104.0)

CSeq > 0

| Call-ID <= 0: REJECTED (101.0)

| Call-ID > 0

| | Replaces <= 0

| | | [...]

| | | To_IP <= 0

| | | | [...]

| | | To_IP > 0

| | | | [...]

| | | | | Via_IP <= 0

| | | | | | [...]

| | | | | Via_IP > 0

| | | | | | [...]

| | | | | | From_IP <= 0: REJECTED (2.0)

| | | | | | From_IP > 0: ACCEPTED (38.0)

| | | | | | [...]

| | | | | | Via_rport <= 0: REJECTED (11.0)

| | | | | | Via_rport > 0: ACCEPTED (30.0)

| | | | | | [...]

| | Replaces > 0: REJECTED (38.0)

Fig. 13. Part of a C4.5 tree (SIP REGISTER messages).

bottom or vice versa results in a set of rules enabling the programmer either to
find bugs in a proxy’s implementation or to find out why incoming SIP messages
were rejected. To show the simplicity of the C4.5 decision tree we checked all 78



19

different faulty SIP REGISTER messages and tried to find out why they were
rejected by the SIP proxy. With 51 messages (or 65.38% of all faulty messages)
and with the help of the decision tree it is extremely easy to find out why the
message was rejected, even for people without detailed knowledge of the RFC
3261.

6.2 INVITE Messages

Since in our experiments the INVITE messages did cause errors different from
those of the REGISTER messages, the decision trees stemming from the INVITE
experiments were quite different from those stemming from the REGISTER ex-
periments. Figure 14 shows that incoming INVITE messages that do not contain

To_IP <= 0: REJ. (72.0)

To_IP > 0

| Replaces <= 0

| | [...]

| | From_IP <= 0

| | | Allow-Events_conference <= 0: REJ. (31.0)

| | | Allow-Events_conference > 0: ACC. (10.0)

| | From_IP > 0

| | | [...]

| | | Content-Type_text/html <= 0: ACC. (18.0)

| | | Content-Type_text/html > 0: REJ. (2.0)

| | | [...]

| | | Privacy_header <= 0: ACC. (58.0/2.0)

| | | Privacy_header > 0

| | | [...]

| | | Request-Line_transport <= 0: REJ. (25.0)

| | | Request-Line_transport > 0: ACC. (9.0)

| | | [...]

| Replaces > 0: REJ. (48.0)

Fig. 14. Part of a C4.5 tree (SIP INVITE messages).

the To IP parameter, i.e., the domain in the To header, will probably be rejected
by the SIP proxy. The From IP, meaning the domain in the From header, is also
an important factor if the message will be accepted or rejected.

Similar to the REGISTER case, the decision tree derived at the end of the
INVITE experiments shows lots of final decision rules. Figure 14 shows that
the tested SIP proxy has problems with INVITE messages either containing the
“text/html” value in the Content-Type header, containing the Privacy header,
or containing the “transport=udp” value in the Request-Line.

Figure 13 as well as Figure 14 show that both REGISTER and INVITE
messages are likely to be rejected by the tested SIP proxy if the message contains



20

the Replaces header. In our follow-up work we intend to test other open-source
SIP proxies with the same set of SIP messages to see whether there are notable
differences in this behavior.

7 Conclusion

In this paper we introduce Babel-SIP, an automatic, self-learning SIP-message
translator. Its main use is in the transient phase between creating a new SIP-
stack implementation or a whole new proxy, and the final release of a 100%
reliable proxy version. Generally such situations occur immediately after the
development of a new communication protocol which is quickly adopted and
implemented by numerous vendors. Due to the immaturity of software imple-
mentations, during this phase, devices often fail to communicate, although in
theory they implement the same protocol.

The task of Babel-SIP is to act as a mediator for a specific release of a SIP
proxy. Babel-SIP analyzes SIP messages sent to its proxy (currently REGISTER
and INVITE messages), and learns which SIP messages were accepted by this
proxy, and which were not. Over time, Babel-SIP is able to accurately guess
whether an incoming messages is likely to be accepted by its proxy. If not, Babel-
SIP changes the message in such a way that the probability for acceptance is
increased. By carrying out numerous experiments, we have demonstrated that
with our approach the number of rejected messages for both SIP message types
is almost halved, and that Babel-SIP gains knowledge over time and improves
its effectiveness.

Additionally we have shown that the resulting decision trees indeed provide
good insight into the faulty behavior of either the SIP parser or the SIP clients
and phones themselves. As a consequence, the decision trees can be used by SIP
programmers to remove implementation bugs.

In the near future we will focus on creating semantic rules for changing header
information and test Babel-SIP with different SIP proxies. Since we regard our
approach to be generic, we will also investigate the possible application of our
Babel approach to other popular application protocols such as RTSP or HTTP.

Acknowledgment

The research herein is partially conducted within the competence network Soft-
net Austria (www.soft-net.at) and funded by the Austrian Federal Ministry
of Economics (bm:wa), the province of Styria, the Steirische Wirtschaftsfo-
erderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the center
for innovation and technology (ZIT).

References

1. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol. RFC 3261 (June
2002)



21

2. Wilking, D., Röfer, T.: Realtime Object Recognition Using Decision Tree Learning.
In: RoboCup 2004: Robot World Cup VII, Springer (2005) 556–563

3. Heisig, S., Moyle, S.: Using Model Trees to Characterize Computer Resource Usage.
In: 1st ACM SIGSOFT Workshop on Self-Managed Systems. (2004) 80–84

4. Abbes, T., Bouhoula, A., Rusinowitch, M.: Protocol Analysis in Intrusion Detec-
tion Using Decision Trees. In: International Conference on Information Technology:
Coding and Computing (ITCC’04). (2004) 404–408

5. Kang, H., Zhang, Z., Ranjan, S., Nucci, A.: SIP-based VoIP Traffic Behavior
Profiling and Its Applications. In: MineNet’07. (2007) 39–44

6. Aichernig, B., Peischl, B., Weiglhofer, M., Wotawa, F.: Protocol Conformance
Testing a SIP Registrar: an Industrial Application of Formal Methods. In: 5th
IEEE Int. Conference on Software Engineering and Formal Methods. (2007) 215–
224

7. Abdelnur, H., State, R., Festor, O.: KiF: A Stateful SIP Fuzzer. In: 1st Int.
Conference on Principles, Systems and Applications of IP Telecommunications,
iptcomm.org (2007)

8. Acharya, A., Wand, X., Wrigth, C., Banerjee, N., Sengupta, B.: Real-time Moni-
toring of SIP Infrastructure Using Message Classification. In: MineNet’07. (2007)
45–50

9. Rosenberg, J., Schulzrinne, H.: Reliability of provisional responses in session initi-
ation protocol (sip). RFC 3262 (June 2002)

10. Rosenberg, J., Schulzrinne, H.: Session initiation protocol (sip): Locating sip
servers. RFC 3262 (June 2002)

11. Roach, A.B.: Session initiation protocol (sip)-specific event notification. RFC 3265
(June 2002)

12. Sparks, R.: The session initiation protocol (sip) refer method. RFC 3515 (April
2003)

13. Rosenberg, J.: The session initiation protocol (sip) update method. RFC 3311
(September 2002)

14. Johnston, A., Donovan, S., Sparks, R., Cunningham, C., Summers, K.: Session
initiation protocol (sip) basic call flow examples. RFC 3665 (December 2003)

15. Johnston, A., Donovan, S., Sparks, R., Cunningham, C., Summers, K.: Session
initiation protocol (sip) public switched telephone network (pstn) call flows. RFC
3666 (Decmember 2003)

16. Marshall, W.: Private session initiation protocol (sip) extensions for media autho-
rization. RFC 3313 (January 2003)

17. Peterson, J.: A privacy mechanism for the session initiation protocol (sip). RFC
3323 (November 2002)

18. Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., Haukka, T.: Security Mechanism
Agreement for the Session Initiation Protocol (SIP). RFC 3329 (January 2003)

19. Mitchell, T.: Machine Learning. Mc-Graw-Hill (1997)
20. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann (2005)


