
Modeling User Behavior: A Layered Approach�

Helmut Hlavacs and Gabriele Kotsis
Institute of Applied Computer Science

and Information Systems
University of Vienna

[hlavacsjgabi]@ani.univie.ac.at

Abstract

The simulation of computer systems requires representa-
tive, reliable workload models. When simulating computer
systems or components that are influenced by user behav-
ior, this very behavior has to be modeled by using mathe-
matical means. In this article, we propose a user behavior
model framework that is constructed in a top down manner,
consisting of various layers. Layers offer services to the
next higher layer and require services from the layers be-
low. The framework is meant to enable the modeler to plug
in his own models at the layers of his choice, thus choos-
ing the right balance between the simulation complexity
and creating representative results. We give a description
of the layered framework and the corresponding methodol-
ogy. The approach then will be demonstrated on modeling
HTTP traffic to be used in network traffic simulation.

1 Introduction

Future computer systems and network components will
face a mixture of different workload types, varying from
simple to heavy. Especially the upcoming digitalization of
multimedia will impose tight constraints on the quality of
service (QoS) that the computing and network resources
have to provide. If those requirements are not met, this will
cause user dissatisfaction and may well lead to the loss of
customers or may render a certain computer system worth-
less.

The goal is to apply capacity management and perfor-
mance tuning techniques to balance computer and network
components in such a way that important constraints are
met while keeping the costs at a minimum. Simulation is
a means of evaluating the effects of those management ac-
tivities, which requires reliable, prototypical models for the

�This work was funded by the ESPRIT IV research program of the EC
under grant EP28425 (BISANTE).

generation of artificial workloads. Such workload models
can be defined in various ways, from simple, static mod-
els to sophisticated dynamic or generative models. Low
level models often try to mimic the observed workload as
a stochastic process with similar first- and second-order
statistics. Models for interactive systems may also take
into account the behavior of users, who start, manipulate
and stop applications, causing workload in lower-level com-
puter and network components. When dealing with various
types of models, it may be desirable to store them in li-
braries and to retrieve them at simulation start in a conve-
nient manner.

In this paper, a framework for user behavior models for
interactive computer systems is presented. They are meant
for the simulation of network traffic, stand-alone computer
systems and any mixture of these types.

The remainder of the paper is organized as follows. In
Section 2, we give a summary of related work in the area
of user behavior oriented workload modeling. In Section 3,
we describe the targeted simulation architecture and the dif-
ferent layers of the framework. Section 4 sketches the cor-
responding modeling methodology. In Section 5, we give
an example on how to apply the approach in a case study
on modeling HTTP traffic. We conclude with an outlook on
future work.

2 Related Work

Models for generating realistic computer and network
workload have been under study for many years. Many
models are represented by stochastic processes (Jagerman,
Melamed, Willinger [10], Hlavacs, Kotsis, Steinkellner [9])
only, yielding the time points, where workload arrives at
low level computer components such as the Ethernet phys-
ical layer or a WWW server, as well as the size of the ar-
riving workload, e.g. the amount of traffic to be transfered
over the network.

User behavior models try to catch the sequence of user
interactions at a higher level. Such models will in gen-

eral be hierarchical, as the workload generated at a higher
level will result in a stream of workload requests at a lower
level. The PACFGs (Raghavan, Joseph [14]) are an ex-
ample for such a hierarchical workload description. In
Calzarossa et. al. [3], a layered framework for the model-
ing of workload for parallel systems has been defined. An-
other popular method for catching inter-command depen-
dencies is to apply Markov chains for user behavior model-
ing (Menasce, Almeida, Fonseca, Mendes [11], Calzarossa,
Marie, Trivedi [5], Calzarossa, Haring, Serazzi [4], Chen
[7]). A more static approach has been taken in Noethe [13],
where each user session at the observed computer system is
represented by ann-dimensional vector, each vector com-
ponent containing the percentage of commands of a certain
type. A similar approach is taken in Yan et. al. [16], where
each session at the observed web server in assigned ann-
dimensional vector, each component denoting the number
of times, a certain web documented has been requested
within the session. In Crovella [8], users are represented
by so-called user equivalents, simple two-level heavy tailed
On-Off processes. In Catledge, Pitkow [6], each MOSAIC
session is represented by the slope of a regression line, ob-
tained by plotting the average path length per site against its
frequency.

3 Modeling Framework

The major drawback of the models found in the literature
is the fact that only single model types are used. Whereas
one particular model type might cover a certain field of ap-
plication sufficiently, it might be insufficient for other ap-
plications.

The goal of the modeling framework is to find sets of lay-
ered models that can be plugged onto each other to represent
some typical user behavior that has been either observed, or
that is projected to be seen in the future. The models will be
created top down, starting always at the highest layer and
then going down to the chosen level of detail, each layer
adding another level of detail to the model. Figure 1 shows
the framework layers.

What to do next is passed from the highest layer down
to the lowest by triggering actions. If such an action is trig-
gered for layeri by the next higher layeri+1, layeri starts
triggering a stream of actions for the next lower layeri� 1

and waits for results from it. Results are then processed and,
if necessary, passed on to layeri + 1. The lowest layer in
this stack generates the workload for the resource under ob-
servation. If the modeler chooses to skip intermediate lay-
ers, e.g. because the system under study does not require a
model at that level of detail, those layers will be substituted
by dummy layers, which simply pass on the actions.

The more layer models are plugged-in, the more detailed
will be the workload description and the more accurate will

N
od

e

A
ss

oc
ia

te
d

w
ith

Command layer

Service layer

Resource layer

U
ser B

ehavior M
odel

Source
M

odel
R

esource
M

odel

L
oad

Network CPU Mem I/O

User commands QoS checks QoS actions

Application layer

Session layer

Workload Generator

A
ss

oc
ia

te
d

w
ith

 U
se

r
N

od
e

Se
t

A
ss

oc
ia

te
d

w
ith

Figure 1. Framework layers.

be the result, leading also to more events to be simulated,
increasing the simulator complexity, both w.r.t. CPU time
consumed as well as memory requirements.

3.1 Simulation Architecture

The simulation environment is assumed to work in an
event-driven fashion. Events denote a piece of atomic work
that is scheduled to happen at a specified virtual time point
ti. Generating events of any kind is modeled by the interar-
rival time of such events and the type of the event itself. At
each layer, thus a stream of events is produced.

The simulation architecture is assumed to consist of the
simulation kernel, containing the functionality to schedule
and execute events, the user models, defining the layers, and
terminal equipment or nodes. Within the framework, layer
models of a certain type will be treated like model classes.
At run-time, instances of these classes will be created and
linked together.

At simulation start, the workload generators will create
user sessions and will place them to one of the available
nodes. The user sessions will then start applications and
thus create workload, which will be passed on to the re-
source layer model associated with the node.

3.2 Terminal Equipment and Node Sets

Terminal equipment or nodes denote the hardware that
applications run on. They are also members of the network
topology under observation. Terminal equipment is either
created and connected to the network topology before sim-
ulation start, or is defined as a template. Template instances
are then created at run time and are dynamically connected
to the network topology at some predefined nodes (dial-
in nodes). Terminal equipment can also move around and

might be passed from one dial-in node to the other (han-
dover). Each terminal equipment must be associated with a
resource layer model.

Node sets consist of one or more terminal equipments.
Static node sets consist of pre-defined nodes that are instan-
tiated at simulation start. Dynamic node sets consist of node
templates that are instantiated at run-time as the simulation
evolves. Each workload generator must be associated with
either one node or with one node set, choosing one of the
nodes to host the next user session at run time.

3.3 Layer Signals

The idea behind this framework is to be able to con-
struct libraries holding models of any type. For example, a
Markov chain could be used to model the application layer,
while the command layer could be modeled by a Poisson
process. When actually performing simulation, the user
should be able to choose any model for the various layers
without being forced to know about the model details.

The different layers though must be able to communicate
with each other. From an abstract point of view, this can be
achieved by sending signals from one layer to the other. A
set of signals thus must be defined for each layer that is used
for communication. Each layer model then must be able
to deal with such a set of signals, either by doing nothing,
sending a signal to another layer or by scheduling one or
more events.

At the beginning, a model instance has to be created (ini-
tialization), but is still inactive and must wait for a start-
signal. Once it has received this signal, a model instance
will become active in sending signals and/or generating
events for simulation. Such an activity can be stopped with
the possibility to become active again, and finally the model
instance can be destroyed.

The corresponding standard signals causing the change
of state of a model instance and notifying other instances of
such state, that have to be interpreted by all layers are:

� SIG INIT: tells the next lower layer model instance to
initialize itself.

� SIG START: tells the next lower layer model instance
to start its activities.

� SIG STOP: tells the next lower layer model instance
to stop its activities.

� SIG STOPPED: tells the next higher layer model in-
stance that the sender has stopped its activities.

� SIG END: tells the next lower layer model instance to
terminate/destroy itself.

In addition, the service and resource layers must be
able to handle additional signals (SIGREQ, SIGSEND,
SIG RECV) which indicate the actual data transfer.

Signals can be transported from instance to instance by
various means, depending on the programming language
used for implementation and the underlying simulation ker-
nel. An object-oriented implementation might choose mem-
ber functions that are called either directly by other in-
stances or by a central scheduler, as, for example, is done
within ns (Bajaj et. al. [2]). Other simulator kernels will
allow messages that are passed from one entity to the other,
like, for example, PARSEC (Bagrodia et. al. [1]), OPNET
([12]) and OMNeT++ (Varga, Pongor [15]). If one is in-
terested to create layer models that can be run on different
simulation kernels, then some simulator specific layer be-
tween the models and the kernel must be inserted, though
this will not be treated in this work.

The following subsections will describe the purpose of
each layer in detail. Many of the models will consist of a
finite (yet dynamically changing) set of states, which might
change over time. Until stated otherwise, the described lay-
ers are assumed to use the above set of standard signals.

3.4 Workload Generator

At the highest layer in the framework, a workload gener-
ator is associated with each node set. This workload gener-
ator creates user sessions according to the desired statistical
distribution. This can be done in two ways:

� The workload generator is associated with a static node
set. In this case, a currently free member of the static
node set is chosen to host the next user session. As
an example, a company network can be taken, where
employees arrive in the morning and start generating
network requests on their workstations.

� The workload generator is associated with a dynamic
node set: In this case, nodes are created according to
their node templates and are connected to a member
of their associated node sets (dial-in nodes). Here,
as an example, a mobile communication network can
be taken, where users arrive according to some arrival
rate, and start generating workload using their mobile
terminal equipment.

Generating user sessions can either be done synchronously
or asynchronously to its next lower layer:

� Synchronous: The time to create the next user session
instance is computed only, if the next lower layer has
ended the session. This results in a sequence of none-
overlapping sessions.

App 1
New

App 2

App 3

Session
End

App

Figure 2. Session layer model.

� Asynchronous: The time to create the next user session
instance is computed right after the previous user ses-
sion instance has been created. In this case, sessions
can overlap and competition for the available nodes
might occur.

Workload generators thus must be able to host one or more
user sessions. The workload generator instances are cre-
ated at simulation start. Each user session instance is then
created and linked to its workload generator instance at run-
time.

3.5 Session Layer

Models at this layer have the following tasks:

� Start applications.

� Choose the application to use.

� End session.

Note that it is only the application to use, not the service that
is chosen. Also, the number of possible states of models at
this layer may vary, as in principle, many applications can
be started and stopped again. Figure 2 shows an example
for such a session layer model.

Once, an application is chosen, the next lower layer starts
services of this application. Starting and choosing appli-
cations can again be done either synchronously or asyn-
chronously.

Session layer models are plugged directly on top of ap-
plication layer models. Note that session layer models can
be very simple dummy models that just start an application
(which in turn just chooses and starts a command sequence).
This way, each TE/user can create workload with very small
effort at a low level of detail.

3.6 Application Layer

Application models define, how the user interacts with
the chosen application. Basically, the user can perform one
of the following interactions:

� Start a new command sequence.

� Choose a running command sequence.

� Stop the application.

If the application is stopped, the user session instance above
must start another application or choose another one. The
generation or selection of command sequences can again
be done synchronously or asynchronously to the user com-
mands at the next lower layer.

Application layer models are plugged on top of com-
mand layer models. Note that application layer models can
be very simple dummies, having nothing more to do than
starting a command sequence.

3.7 Command Layer

At this layer, sequences of commands for lower level ser-
vices are generated. This layer consists of three independent
sub-models.

3.7.1 User Commands

Here, services are started or running services are selected,
and sequences of commands are issued for running services.
Commands for running services denote the changing of pa-
rameters like the size or color depth of a running video con-
ference.

Amongst the possible commands are:

� Start a service

� Change service parameters.

� Stop the service.

If a service is started, it generates workload requests and
passes them down to the resource layer. The observed qual-
ity of service (QoS) is part of the service and can be ob-
tained by the next higher level. Services can stop them-
selves after delivering the result (for example HTTP). If a
service is stopped, the command layer model must take over
again and generate the next command.

User commands can be simple dummy models, which
either do nothing or just start a service or stop it after some
time.

3.7.2 QoS Checks

As long as a service is running, it delivers QoS descrip-
tions. For each QoS description, a QoS level can be de-
fined. QoS checks compare the observed QoS level to the
requested QoS level. QoS checks can be performed as sin-
gle or periodic checks:

� Single: The check is performed only once, after a time
out occurred. If the service has not been completed,
the appropriate QoS action is triggered (for example
the requested web document has not been downloaded)

� Periodic. The check is performed periodically, until
the service stops.

3.7.3 QoS Actions

If QoS checks fail, an appropriate QoS action is triggered
and performed. QoS actions and user actions are at the same
level. They can start or stop services, or change parameters
for running services.

3.8 Service Layer

Service layer models consist of parameterized traffic
generators (Jagerman, Melamed, Willinger [10], Hlavacs,
Kotsis, Steinkellner [9]). Some parameters can be changed
by higher level models and influence the QoS level that the
higher level model chooses. Other parameters are fixed and
describe a situation that can not be changed by users, like
the distribution of file sizes at a web site.

Services can stop themselves, it they have performed
their task (like delivered the web document, played a video).
Services can also be represented by very simple models,
which just create low detail workload by using simple fluid
models or renewal models like Poisson arrivals.

In addition to standard signals, the service layer will send
the following signals:

� SIG SEND: Sendsn bytes to the next lower layer (re-
source layer)

� SIG REQ: The service requestsn seconds orn bytes
from a resource (CPU, main memory,I/O).

� SIG RECV: Tells the next higher layer model instance
that the service delivers results.

3.9 Resource Layer

Resource layer models describe physical node resources
like networks (TCP/IP, ATM), CPU queues, memory pages
and I/O resources like disks. Each of these models must be
implemented at least as a dummy resource. There is only

one resource layer model instance per workload generator
instance. The network resource model will in general be
attached to another network resource model within the net-
work.

When using existing simulation kernels like ns, some of
these resources will only be entry points to the network sim-
ulator kernel.

The following signals will be sent by the resource layer:

� SIG SEND: Sendsn bytes to an attached resource at
resource layer.

� SIG RECV: Tells the next upper layer model instance
that the resource is delivering

4 Modeling Methodology

The previous sections describe a framework of model
classes and how to glue these model classes together. Yet
it says nothing about the type of models to use. Its strongest
suggestion is that each model is always in one well defined
state, where the number of possible states may vary dynam-
ically. As model types, any standard model like Markov
Chains of order 1 or higher, or other stochastic processes
would fit.

Modeling will be divided into two parts:

1. Modeling user behavior: In this part, explicit mod-
els for users will be derived, whenever the data to do
so is available. If this is not the case, then the ob-
served workload will be described at the highest possi-
ble layer (e.g. the stream of web requests, the stream of
observed LAN packets, the stream of observed ATM
packets). Also, layers for which no data is available
will be replaced by dummy layers.

2. Modeling service workload: This model will generate
the actual workload and will put it into a resource layer
model instance.

Creating realistic user models will require the data to do so.
For example, data derived from a WWW proxy log will al-
low to generate a user model starting applications and start-
ing HTTP services depending on previous services. It will
not allow to construct QoS checks, as this is not recorded in
the proxy log. Here, simple heuristics must be inserted.

5 Case Study: Modeling HTTP Requests

As an example for the layered approach, in this section,
user models for creating HTTP requests will be presented.
These user models will then drive a network simulator to
derive performance measures.

Let us assume that the simulation goal is to derive per-
formance figures for a hypothetical computer science lab,
an institution is planning to install. The question to answer
is, how many workstations to buy, and how to dimensionate
the network connecting the lab with the internet. Students
arrive according to some given exponentially distributed in-
terarrival time and try to find a free workstation. If no work-
station is available, the students will immediately go away.

Based on the collected data, user sessions are classified
into several types. Users arriving at some arrival rate would
then be represented by one instance of a session type. For
each session type, one browser would be started, producing
a stream of file requests within each session.

This way, as opposed to directly modeling streams of
web requests which requires detailed knowledge on the sta-
tistical properties, analysts using the simulator would be
able to alter the workload to be created by just changing the
session arrival rate, or by additionally changing the mixture
of session types.

5.1 Data Collection Environment

Since early 1999, a Squid proxy server has been installed
in one the computer science labs of the University of Vi-
enna. As a standard web browser, Netscape 4.08 has been
provided. For all web browsers, the local cache has been
switched off and locked, such that users are not able to
switch it on again. Thus, all web requests are led through
the central proxy server. The data under study has been col-
lected in the interval from February 23rd to May 6th, lead-
ing to a total of 51516 downloads. The downloads have then
been grouped together by creating user sessions.

5.2 User Model Details

For finding session limits, the download interarrival time
between 2 downloads from the same IP address has been
used. The empirical cumulative distribution function of
these differences revealed that over 95% have been less than
500 seconds. Moreover, the histogram showed a significant
flattening at about 1800 seconds. A new session thus is said
to start, if the difference is either larger than 1800 seconds,
or larger than 500 seconds plus a change in the web server
address serving the download.

By using this strategy, 224 sessions were identified, from
these, 196 had more than 15 downloads, which we con-
sidered a minimum to deliver meaningful data. Moreover,
the interarrival time between sessions has been derived, the
histogram is shown in Figure 3. It clearly shows a close
(though not exact) relationship to an exponential distribu-
tion with a mean of 1278.246 seconds.

The MIME types of the downloaded file were grouped
together, forming the five groups stated in Table 1. Each

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 2000 4000 6000 8000 10000 12000 14000

H
is

to
gr

am
 in

te
ns

iti
es

Seconds

Histogram of session inter-arrival time

Histogram intensities
Exponential density function

Figure 3. Histogram of session inter-arrival
time.

T1 T2 T3 T4 T5

appl. audio/video image text unknown

Table 1. MIME type groups.

session then was represented by its mixture of downloaded
filetypes in percent, yielding 196 5-dimensional vectors.
The five dimensions then were reduced to four by using
principal component analysis, the percent of variance ex-
plained by the principal components can be seen in Table
2.

Furthermore, the vectors then were classified by using
the k-means clustering algorithm for different numbers of
clusters. Figure 4 shows the sum of squared intra-cluster
errors for different numbers of clusters. After 5 or more
clusters, the relative decrease in the errors is clearly getting
smaller, and therefore, few can be gained by further increas-
ing the number of clusters. Thus, 5 has been selected as the
number of clusters to use. Table 3 shows the percentage of
sessions within each cluster, yielding also the probability of
creating a session belonging to this cluster.

For each cluster, a Markov chain of order one was cre-
ated, representing the sequence of downloading files of one
of the five MIME type groups. Two additional states have
been added to these Markov chains, one for session start,
and one for session end. The session duration thus is given
implicitly by the probabilities to enter the end-state.

Furthermore, for each of the clusters and each MIME

V1 V2 V3 V4 V5

38.4 28.14 21.93 11.56 7.8e-05

Table 2. Percent of variance explained by the
principal components.

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14 16

Su
m

 o
f

sq
ua

re
d

er
ro

rs

Number of clusters

Sum of squared intra-cluster errors

Figure 4. Sum of squared intra-cluster errors.

C1 C2 C3 C4 C5

7.7 59.1 1.0 28.1 4.1

Table 3. Percent of sessions contained in
each cluster.

type group, an empirical cumulative distribution function
of the observed file sizes was created. This has also been
done for the interarrival time of download requests within
the sessions.

5.3 Simulation Results

A prototypical discrete event simulator has been imple-
mented in C++, using the framework described in Section
3. Figure 5 shows the simulator C++ classes.

The set of classes contains base classes for each of the
layers, all derived from a singleEventhandlerclass. These
base classes serve as dummy layers, such that after re-
ceiving the signal SIGSTART, they create one instance
of the next sub-layer and send the signals SIGINIT and
SIG START to them. For modeling the user sessions repre-

QueueableObject

Event

Node

Packet

Random

Eventhandler
Download

WLG

Session

Application Browser

Command

Service

Network

LabWLG

HTTP

ClusterX

Queue

Scheduler

Figure 5. Simulator classes.

senting the collected data, additional classes have been de-
rived from the layer base classes, implementing the model
types of choice.

The process creating user sessions according to the cho-
sen arrival rate, as well as choosing the next session type,
was placed into a class derived from the workload genera-
tor base class. The session layer then was represented by a
dummy model, simply creating and starting a model derived
from the application layer base class. There, the interarrival
time for file requests, together with the desired file types,
are created. Finally, inside the command layer model, the
file sizes for the chosen session types and file types are com-
puted for each request. The service layer model again serves
as a dummy layer by just inserting arriving data into the net-
work model implemented at the resource layer. There, the
data is put into a queue and removed after the time span
necessary to be transported on a 2 Mbit network.

As performance figures, the probability of finding no free
workstation, and the utilization of a 2 Mbit network line
were computed. The number of students arriving per hour
was chosen to be in the interval from 1 to 120, in incre-
mental steps of 5. For each of these arrival rates, several
simulation runs were carried out, each creating 300 user ses-
sions and yielding an estimate for the parameter under study
(rejection probability, network utilization). This was done,
until the ratio of the 95 percent confidence interval length
to the mean of these estimates was below 0.10, but with a
maximum of 50 runs. This means that if the limit was met
within 50 runs, with a probability of 95 percent, the error
of the computed performance measure is below 5 percent.
Computation was carried out on the 5 node Beowulf cluster
installed at the Institute of Physical and Theoretical Chem-
istry at the Technical University of Vienna, each node being
equipped with two Pentium II 350 MHz processors. Using
a naive parallelization strategy, the computing time was less
than 1.5 hours, which could be advanced further by apply-
ing some load balancing technique. Figures 6 and 7 show
the simulation results. It can be clearly seen that it is neces-
sary to provide between at least 10 to 20 workstations. On
the other hand, the network bandwidth of 2 Mbit/sec seems
to be sufficient to transport the produced web traffic.

The analyst can now easily experiment with different
scenarios, e.g. by varying the mix of sessions and study
the effects on network performance.

6 Conclusion

In this paper, a layered framework for user behavior ori-
ented workload modeling has been presented. The layered
approach supports the characterization of the workload at
the desired level of detail, ranging from an explicit imple-
mentation of user behavior at the top level to a low level
description of the resulting load at the resource layer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Pr
ob

ab
ili

ty
 o

f
re

je
ct

io
n

Students/Hour

Probability of rejection

1 WS
5 WS

10 WS
20 WS
30 WS

Figure 6. Probability of rejection depending
on student arrival rate.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100 120

N
et

w
or

k
ut

ili
za

tio
n

Students/Hour

Utilization of 2 Mb network

1 WS
5 WS

10 WS
20 WS
30 WS

Figure 7. Utilization of 2 Mbit network depend-
ing on student arrival rate.

Plugging workload model components into the different
layers of the framework supports modeling flexibility in that
different types of models, including pre-defined as well as
self-defined models, can be included in the framework. An-
alysts using a simulator of this kind can then easily choose
between the various model types to drive simulation runs.
As a prototypical realization of the framework, a simula-
tor reflecting the layered structure has been created in C++
and used to derive performance figures for a hypothetical
computer environment. In this case study, we have demon-
strated, that the analyst can easily perform what-if scenarios
by changing a high-level workload parameter, like the inter-
session arrival time, and observe the effects of this change
on lower levels, e.g. the actual traffic load imposed to the
network.

Current and future work focuses on the implementation
of the proposed framework, providing a library of reusable,
parameterizable model classes and its integration into pop-

ular network traffic simulators (e.g. OPNET [12] and ns
[2]).

References

[1] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Mar-
tin, B. Park, and H. Song. Parsec: A parallel simulation en-
vironment for complex systems.Computer, 31(10):77–85,
1998.

[2] S. Bajaj. Improving simulation for network research. Tech-
nical Report 99-702, University of Southern California, Mar.
1999.

[3] M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and
D. Tessera. A hierarchical approach to workload character-
ization for parallel systems. In B. Hertzberger and G. Ser-
azzi, editors,High Performance Computing and Network-
ing, LNCS vol. 919, pages 102–109. Springer, 1995.

[4] M. Calzarossa, G. Haring, and G. Serazzi. Workload model-
ing for computer networks. In U. Kastens and F. Ramming,
editors,Architektur und Betrieb von Rechensystemen, pages
324–339, Muenchen, 1988. Springer-Verlag.

[5] M. Calzarossa, R. Marie, and K. Trivedi. System perfor-
mance with user behavior graphs.Performance Evaluation,
11:155–164, 1990.

[6] L. Catledge and J. Pitkow. Characterizing browsing strate-
gies in the world-widw web.Computer Networks and ISDN
Systems, 26(6):1065–1073, 1995.

[7] C. Chen. Structuring and visualizing the www by general-
ized similarity analysis. InProceedings of Hypertext ’97,
1997.

[8] M. Crovella. Generating representative web workloads for
network and server performance evaluation.Performance
Evaluation Review, 26(1):151–160, 1998.

[9] H. Hlavacs, G. Kotsis, and C. Steinkellner. Traffic source
modeling. Technical Report TR-99101, Institute for Applied
Computer Science and Information Systems, 1999.

[10] D. Jagerman, B. Melamed, and W. Willinger. Stochas-
tic modeling of traffic processes. In J. Dshalalow, editor,
Frontiers in Queuing:Models, Methods and Problems. CRC
Press, 1996.

[11] D. Menasce, V. Almeida, R. Fonseca, and M. Mendes. Re-
source management policies for e-commerce servers. InThe
2nd Workshop on Internet Server Performance (WISP 99),
1999.

[12] MIL3. Opnet, www.mil3.com.
[13] V. Noethe. User behaviour at system command language

level. Computer Performance, 3(1):5–9, 1982.
[14] S. Raghavan and P. Joseph. Workload models for multiwin-

dow distributed environments. InQuantitative Evaluation of
Computing and Communication Systems, Heidelberg, 1995.
Springer-Verlag.

[15] A. Varga and G. Pongor. Flexible topology description lan-
guage for simulation programs. InProceedings of the 9th
European Simulation Symposium (ESS’97), pages 225–229,
1997.

[16] T. Yan, M. Jacobsen, H. Garcia-Molina, and D. Umesh-
war. From user access patterns to dynamic hypertext link-
ing. Computer Networks and ISDN Systems, 28(7-11):1007,
1996.

