
1

WORKLOAD GENERATION BY MODELING USER BEHAVIOR*

Helmut Hlavacs & Ewald Hotop & Gabriele Kotsis
Institute for Computer Science and Business Informatics

University of Vienna, Austria
{hlavacs, hotop, kotsis}@ani.univie.ac.at

* This work was performed in the BISANTE (Broadband Integrated Satellite Network Traffic Evaluations)
Esprit project supported by the EC under research grant EP28425. See http://www.bisante.org

ABSTRACT
In this paper, a user-behavior oriented workload
generator for OPNET is presented. In this novel
approach, both packet generation and user interaction
with applications and services that cause the network
traffic are modeled. This way, the analyst can model
traffic and construct a workload at a higher level of
abstraction. The user behavior is represented by a user
profile, defining a hierarchy of independent processes
that exchange standardized messages with each other.
Generally, any type of stochastic process can model such
processes. In the current implementation, processes are
modeled by finite state machines whose states denote the
actions a user can perform. A collection of text files
defining a process hierarchy is called a user profile. User
profiles are stored in a user profile database that is a sub-
tree of a Windows or Unix file system. Due to the
hierarchical profile structure, it is possible to define user
behavior models in a modular manner. This way, new
user profiles can easily be constructed by reusing
existing (sub-) profiles.

INTRODUCTION
Future computer systems and network components will
face a mixture of different workload types, varying from
simple to heavy. The upcoming digitalization of
multimedia will impose especially tight constraints on
the quality of service (QoS) that the computing and
network resources have to provide. If those requirements
are not met, users will be dissatisfied, which may lead to
the loss of customers or may render a certain computer
system worthless. Thus, before actually implementing a
new network, analysts should apply capacity
management and performance tuning techniques to
balance computer and network components in such a
way that important constraints are met while keeping the
costs at a minimum.

Simulation is a means of evaluating the effects of those
management activities, requiring reliable, and
prototypical models for the generation of artificial
workloads. Low-level workload models often try to

mimic the observed workload as a stochastic process
with similar first- and second-order statistics. Models for
interactive systems may also take into account the
behavior of users, who start, manipulate and stop
applications, causing workload in lower-level computer
and network components. When dealing with various
types of models, it may be desirable to store them in
libraries and to retrieve them at simulation start time.

In this paper, a workload generator simulating the
behavior of users of interactive computer systems is
presented. It is meant for the simulation of network
traffic, stand-alone computer systems and any mixture
thereof.

RELATED WORK
Models for generating realistic computer and network
workload have been under study for many years. Many
models are represented by stochastic processes ([8], [6])
only, yielding the time points where workload arrives at
low-level computer components such as the Ethernet
physical layer or a WWW server, as well as the size of
the arriving workload, e.g., the amount of traffic to be
transferred over the network.

User behavior models try to catch the sequence of user
interactions at a higher level. Such models will in
general be hierarchical, as the workload generated at a
higher level will result in a stream of workload requests
at a lower level. Examples for hierarchical user models
can be found in [12] and [3]. Another popular method
for catching inter-command dependencies is to apply
Markov Chains for user behavior modeling ([9], [2], [1],
[4]). More static approaches can be found in [11] and
[13], where users are described by n-dimensional
vectors. In [5], users are represented by so-called “user
equivalents”, which are simple two-level heavy tailed
On-Off processes.

THE BISANTE WORKLOAD GENERATOR
The workload of a computer system or network can be
described at various levels, ranging from a user or

2

application oriented view to a resource or system
oriented view. Depending on the objectives of the
evaluation study, the analyst should be able to choose
the appropriate level of characterization. However, most
existing workload generators only support a
characterization at the lower levels (in terms of resource
requirements, packet arrival rates, etc.), not allowing for
a description and representation of the underlying user
behavior.

The goal of the BISANTE workload generator modeling
framework ([7]) is to find sets of layered models that can
be plugged into each other to represent some typical user
behavior that has been either observed or that is
projected to be seen in the future. As the user behavior is
modeled by a tree of independent processes
communicating with each other by sending standardized
signals, any type of stochastic process like Petri Nets or
Markov Chains may be used. The currently implemented
model types consist of different versions of finite state
machines (FSMs) specialized for certain tasks like
reacting to QoS or generating packets.

The model implementation, however, is separated from
the stochastic model description, i.e., the states an FSM
of a particular user profile at a certain level can enter, the
distribution for the time between two state changes, and
which sub-processes it can create. This data is stored in
the BISANTE user behavior database, a sub-tree of a
Windows or Unix file system. Different user profiles are
put into different sub-trees of this database, where they
are represented by text files describing each node of the
FSM hierarchy.

The analyst using the BISANTE workload generator first
selects one or several user profiles from the database and
then attaches the selected user profiles to nodes in his
scenario. At simulation start, the workload generator
implementation creates the processes inside the scenario
nodes, each process then reading in its description from
the user behavior database.

USER PROFILES
The behavior of users is represented by a tree of text
files, where each text file describes a stochastic process
that at run-time may be created by its parent and may
itself create child processes as well. The tree itself then
is called a user profile.

Workload
Generator (wlg)

Node
User Session
(us1/session)

Application
(app2/app)

Application
(app1/app)

Node
Attribute

Command
(cmd1)

Service
(srvc1)

Service
(srvc2)

Service
(srvc3)

TPAL/TCP/UDP

Figure 1: Hierarchical user profile.

Figure 1 shows such a tree. The text files describing this
situation are shown in Table 2. Here it is assumed that
the profile database is stored in directory “PD”
somewhere in the file system.

Filename Description
PD\wlg\wlg.txt Points at user profile us1 with file

name “session.txt”.
PD\profiles\us1
\session.txt

Description of session us1\session.
Contains session-length pdf and
type of applications that may be
started.

PD\profiles\us1
\app1\app1.txt

Description of application us1\app1.
Contains commands that may be
started.

PD\profiles\us1
\app1\cmd.txt

Description of command
us1\app1\cmd. Contains information
about how to react to observed QoS
and about types of services to be
started.

PD\profiles\us1
\app1\srvc1.txt

Description of service
us1\app1\srvc1. Contains
information on which server to
connect to, how many
requests/packets to send to the
server, packet inter-arrival time pdf
and packet-size pdf.

PD\profiles\us1
\app1\srvc2.txt

...

PD\profiles\us1
\app1\srvc3.txt

...

Table 2: Example user profile.

3

As a user behavior profile may consist of several
different text files stored in succeeding directories, it
may seem that it is generally complicated to construct or
use the BISANTE user behavior profiles. However there
are several reasons why this is not necessarily the case:
• User profiles may be very simple. For example, a

Workload Generator may immediately create a
service that is no more than a flexible packet
generator. This scheme would provide similar
functionality as is provided in regular packet
generators.

• One task of BISANTE is to create a representative
user behavior database. This means that user profiles
for various applications and protocols will be
provided. Analysts may simply use the provided
profiles, or may create new profiles by copying and
adapting appropriate sub-profiles.

• As the user behavior and all stochastic properties are
described in simple text-files, automatic generation
of user profiles is an easy task.

• A planned graphical user interface will provide
quick profile overview and manipulation.

The idea behind the BISANTE workload generator is to
use very simple models for packet generation only when
feasible, but to be able to create user behavior profiles of
arbitrary complexity whenever needed. Of course, any
mixture of simple and complex models is possible.

In a simulation scenario, one or several nodes may point
to a particular workload generator described in the user
behavior database. In OPNET this is done by setting the
node attribute “BI_WorkloadGeneratorName” defined in
the BISANTE process model to the name of the
appropriate text-file. An example can be seen in Figure
3.

Figure 3: Binding a WLG to a node.

In the file describing the workload generator, the
locations and names of user behavior profiles that may
be created at run-time are stored.

IMPLEMENTATION
The model types are implemented by C++ classes. The
basic FSM functionality is implemented in the Module
class; all other classes are then derived from Module.

Type Description
event handler Super-class of all process types.

Provides functionality to interact
with simulator. New process types
must be derived from this class.

module Basic finite state machine class.
workload
generator

Derived from module. Exactly one
workload generator is attached to
each node in the scenario. The WLG
will then create sessions on its own
node or on other nodes in the
scenario.

command Derived from module, a command is
meant to interact with services (i.e.,
the packet generators) to evaluate
and react to the observed QoS. It
may also change parameters of its
child processes.

service Derived from command, a service is
a flexible packet generator. It may
open connections to servers and may
send packets/requests to them. It
may additionally create QoS reports.

Table 4: The main C++ classes.

All C++ code is stored in the libraries “bisante.lib”
(Windows) or “bisante.a” (Unix). In order to make
OPNET link the library to the simulation executable at
simulation start, the library name and location must also
be put into the OPNET environment database.

THE FSM STATES
As was said before, the currently implemented processes
are basically finite state machines. The states here denote
the actions or events that the machine can perform.
When being in state s0 (s0 is the last executed event) at
time t and choosing event s1 to be performed next, s1 is
scheduled to be performed at time t+dt, where dt≥0 is a
random number attached either to s1 directly, or to the
transition s0→ s1 if this transition is stated explicitly. If
no random number is provided for s1 or the transition
s0→ s1, dt is set to 0. At time t+dt, s1 is performed and
the next event s2 is chosen and scheduled. If no new
event is found, nothing is scheduled and the FSM waits

4

for signals to arrive from its parent or any child
processes.

However, any such FSM is also an On-Off process, a
process that is either in the super-states On or Off, here
called Started or Stopped. The scheme described above
will only be performed if the process is in super-state
Started. If it is in super-state Stopped it may not schedule
new events or react to incoming signals. This On-Off
process scheme is also reflected in the OPNET process
model used, shown in Figure 5.

Figure 5: The process model.

Choosing the next event to be executed may also be
done upon the arrival of a signal. This is the basic
mechanism for processes to communicate with their
parents or children. A signal sent from parent to child is
a command (not to be confused with the C++ class
Command), i.e., it must be executed immediately by the
receiver. Signals sent from children to their parents are
called indicators, i.e., they flag a change of the child’s
state and the parent may or may not react to this signal.
If a process is to react to a signal, this must be stated
explicitly in the profile.

Table 6 contains the events that may be scheduled by a
standard Module for itself (starting by “EVENT_”), and
the signals it may send or react to (commands start with
“CMD_”, indicators start with “IND_”). Additionally,
“(s)” denotes the fact that this process type may send this
signal, while “(r)” denotes the fact that this process type
may react to this signal by choosing a new event from its
profile.

Table 7 contains the events and signals that additionally
may be scheduled or processed by Commands. Table 8
contains the events and signals that additionally may be
scheduled or processed by Services.

Event/Signal Description
EVENT_NEW_SL Create a new child process.
EVENT_STOP Module stops itself.
EVENT_END Module ends itself.
EVENT_STOPCHILD Sending a CMD_STOP

signal stops a child.
EVENT_ENDCHILD Sending a CMD_END signal

ends a child.
CMD_INIT (s) A child must initialize itself

(after creation).
CMD_START (s/r) A child must enter the

Started super-state.
IND_STOPPED (s/r) Sent to the parent when

entering the Stopped super-
state.

IND_ENDED (s/r) Sent to the parent when
entering the Ended super-
state.

Table 6: Module events and signals.

Event/Signal Description
EVENT_REQ Send a CMD_REQ to a child, which

immediately will change certain
parameters.

CMD_REQ (s) Forces a child to change parameters,
e.g., the packet inter-arrival time.

IND_RECV (r) A QoS report is sent from a child,
holding a QoS class (a string) and a
QoS level (a floating-point number).
For example, the class may be
“bitrate”, and the level may denote 1
Mbit / s.

Table 7: Additional Command events and signals.

Event/Signal Description
EVENT_NEW_PACKET Send a new packet or

request to the partner
Service.

EVENT_QOSREPORT Generate a QoS report.
CMD_REQ (r) Change parameters.
IND_RECV (s) Send a QoS report to

parent.

Table 8: Additional Service events and signals.

As was said before, the Service class is derived from the
Command class, i.e., a Service may also act as a
Command. As Commands are meant for controlling
Services, a Service may also control sub-services. For
example, a TCP-based control channel may control one

5

or several sub-channels carrying audio or video data
over UDP connections.

CASE STUDY: HTTP REQUESTS
As an example for the BISANTE workload generator, in
this section, a scenario of web users downloading
documents from the web will be simulated. Let the
simulation goal be to derive performance figures for a
hypothetical computer science lab that an institution is
planning to install. The question to answer is, how many
workstations to buy, and how to dimension the network
connecting the lab with the Internet? Students arrive
according to some given exponentially distributed arrival
rate and try to find a free workstation. If no workstation
is available, the students will immediately go away.

Since early 1999, a Squid proxy server has been installed
in one of the computer science labs of the University of
Vienna. All web download requests from inside the lab
were led through this proxy server. The logged data (in
total 51516 downloads) were used to derive five user
classes. Details of this analysis can be found in [7].

The above-described user classes where then described
by user profiles stored in the BISANTE user behavior
database shown in Table 9.

PD\wlg\bisante\http\wlg.txt
PD\wlg\bisante\http\server.txt
PD\wlg\bisante\http\client.txt
PD\profiles\bisante\http\server\server.txt
PD\profiles\bisante\http\class1\session.txt
PD\profiles\bisante\http\class1\browser.txt
PD\profiles\bisante\http\class1\http_get.txt
PD\profiles\bisante\http\class2\session.txt
PD\profiles\bisante\http\class2\browser.txt
PD\profiles\bisante\http\class2\http_get.txt
...

Table 9: Web user profile files.

User sessions arriving at some arrival rate are then
represented by one instance of the five classes chosen at
random. For each instance, one browser is started,
producing a stream of file requests within each session.
This way, as opposed to directly modeling streams of
web requests that requires detailed knowledge of the
statistical properties, analysts using the simulator would
be able to alter the workload to be created by just
changing the session arrival rate, or by additionally
changing the mixture of session types.

SIMULATION RESULTS
The computer science lab has been modeled in various
scenarios, containing 1, 5, 10, 20 or 30 client computers.
On each client computer, the Workload Generator
described in file “PD\wlg\bisante\http\client” was placed
by setting the node attribute
“BI_WorkloadGeneratorName” to “bisante\http\client“.
Additionally, one node not connected to the network was
placed into the topology to create arriving student
sessions. On this node, the node attribute was set to
“bisante\http\wlg”. On the server node, the node attribute
was set to “bisante\http\server”.

Additionally, it was assumed that students arrive at a rate
of 1 ≤ λ ≤ 120 students per hour, with increments of 5. If
a student finds a free client computer, he immediately
starts to download files from the Web; otherwise the
student is rejected and leaves the facility. For each λ, the
scenario was simulated for 12 hours. The simulations
were carried out on three workstations in parallel,
simulation times varied from 100 s to over 14,000 s. At a
rate of up to 11,000 events/s, each run produced between
a few thousands and over 100,000,000 events.

Figure 10: Probability of student rejection.

Figure 10 shows the probability of a student finding no
free workstation.

Figure 11: Downloads per hour.

6

Figure 11 shows the number of downloads per hour. The
mean throughput from the Web to the lab can be seen in
Figure 12.

Figure 12: Mean network throughput.

CONCLUSIONS
In this paper, the OPNET implementation of the
BISANTE workload generator has been introduced. It
consists of an open framework of hierarchies of
stochastic processes that communicate with each other
by sending signals. A similar hierarchy of text files that
contain the description of the processes used describes
the process hierarchy. The text files are stored in the user
behavior database, a sub-tree of a standard Windows or
Unix file system, reflecting the hierarchical user
behavior profile. The currently implemented processes
act as finite state machines, though any kind of
stochastic process may be used instead, as long as it is
derived from the C++ class Event Handler and adheres
to the signaling conventions.

The currently available OPNET version has been used to
simulate hypothetical computer science lab scenarios. In
this case study, we have demonstrated that the analyst
can easily perform what-if scenarios by changing a high-
level workload parameter, like the inter-session arrival
time, and observe the effects of this change on lower
levels, e.g., the actual traffic load imposed on the
network.

FUTURE WORK
Current work focuses on providing a mature and usable
product for OPNET and NS, the Berkeley Network
Simulator. Also, several different sources for network
traffic are analyzed and modeled by user behavior
profiles.

Future work will also include the development of a
simple graphical user interface for the user behavior
database.

REFERENCES
[1] M. Calzarossa, G. Haring, G. Serazzi, Workload

modeling for computer networks. In “Architektur
und Betrieb von Rechensystemen” (U. Kastens and
F. Ramming, Eds.), Springer-Verlag, Berlin 1988,
pp. 324— 339.

[2] M. Calzarossa, R. Marie, K. Trivedi, System
performance with user behavior graphs.
Performance Evaluation 11 (1990) , pp. 155— 164.

[3] M. Calzarossa et al., A hierarchical approach to
workload characterization for parallel systems. In
“High Performance Computing and Networking” (B.
Hertzberger and G. Serazzi, eds.). Springer LNCS,
Berlin 1995, pp. 102— 109.

[4] C. Chen. Structuring and visualizing the www by
generalized similarity analysis. In “Proceedings of
Hypertext '97”, 1997.

[5] M. Crovella, Generating representative web
workloads for network and server performance
evaluation. Performance Evaluation Review 26-1
(1998), pp. 151— 160.

[6] H. Hlavacs, G. Kotsis, C. Steinkellner, Traffic source
modeling. Technical Report TR-99101, Institute for
Applied Computer Science and Information
Systems, 1999.

[7] H. Hlavacs, G. Kotsis, Modeling User Behavior: A
Layered Approach. In “MASCOTS'99”, IEEE
Computer Society, Los Alamitos, California 1999,
pp. 218— 225.

[8] D. Jagerman, B. Melamed, W. Willinger, Stochastic
modeling of traffic processes. In Frontiers in
Queuing:Models, Methods and Problems (J.
Dshalalow, Edr.), CRC Press, 1996.

[9] D. Menasce, V. Almeida, R. Fonseca, M. Mendes,
Resource management policies for e-commerce
servers. In The 2nd Workshop on Internet Server
Performance (WISP 99), 1999.

[10] MIL3, OPNET, http://www.opnet.com
[11] V. Noethe, User behaviour at system command

language level. Computer Performance 3-1 (1982),
pp. 5— 9.

[12] S. Raghavan, P. Joseph, Workload models for
multi-window distributed environments. In
“Quantitative Evaluation of Computing and
Communication Systems”, Springer-Verlag, Berlin
1995.

[13] T. Yan, M. Jacobsen, H. Garcia-Molina, D.
Umeshwar, From user access patterns to dynamic
hypertext linking. Computer Networks and ISDN
Systems 28 (1996), pp. 1007.

