
Simulating Parallel Program Performance with CLUE

Dieter F. Kvasnicka
Institute for Physical and
Theoretical Chemistry,

Vienna University of Technology

Helmut Hlavacs
dieter.kvasnicka@tuwien.ac.at

Institute for Computer Science
and Business Informatics,

University of Vienna
hlavacs@ani.univie.ac.at

Christoph W. Ueberhuber
Institute for Applied and
Numerical Mathematics,

Vienna University of Technology
chri stoph@aurora.anum.tuwien.ac.at

Keywords: parallel, message passing, high perform-

ance, PVM, PC cluster

ABSTRACT

In this paper the simulation and assessment tool CLUE
is described. This tool is able to simulate the performance
of parallel programs using the message passing library
PVM for communication, run on arbitrary parallel ma-
chines, including PC clusters. CLUE redirects calls to PVM
to its own functions, providing an additional layer between
an application and PVM. The simulation is driven by the
application execution itself. The applicability of CLUE is
demonstrated in three case studies, where (i) different load
predictors are compared, and (ii) the performance of a mas-
ter-slave parallelization and (iii) subroutines of the widely
used ScaLapack linear algebra package are simulated.

INTRODUCTION

The increasing number of available parallel computers
or clusters of workstations, interconnected with high speed
networks, has created a need for efficient parallel software.
Developing such is difficult due to the additional communi-
cation overhead often necessary. Factors influencing the
efficiency are, for instance, the problem size, the percentage
of sequential code, the speed of the communication system,
the communication/computation ratio and the number and
type of processors used. Parallel programs running effi-
ciently on one parallel computer might be very inefficient
on others.

There are several ways of comparing algorithms for
parallel computers, all suffering from particular drawbacks.
Analytical models are very difficult to create, might be
based on simplifying assumptions and often cannot catch
the possibly complicated structure of the simulated envi-
ronment or the parallel programs.

Comparison by executing the programs is restricted to
available parallel computers only. Interesting properties
like the program behavior on various platforms, intercon-
nected with different networks, cannot be obtained. Fur-
thermore, the execution of parallel programs as part of an
extensive study to gain insight into program characteristics
might use up large amounts of CPU time, thus consuming
computing time possibly needed otherwise.

Simulation tries to bridge the gap between analytical
models and extensive tests on existing computer platforms.
When simulating the execution of parallel programs, in
principle the performance of any program or program
model running on arbitrary parallel computers may be ana-
lyzed.

In this paper, the simulation and assessment tool CLUE
(cluster evaluator) is introduced, which is able to simulate
the performance of message passing programs executed on
parallel computers. CLUE has been specifically designed to
simulate program runs on clusters of workstations or PCs,
yet CLUE may also simulate other parallel computers like
parallel supercomputers.

One important application of CLUE is the simulation of
the performance of parallel programs run on clusters of
SMPs a priori, i.e., before running them on the real hard-
ware. This way, a potential cluster customer may simulate
the performance impact of certain configuration decisions
before actually buying the cluster. The idea behind this ap-
plication is therefore to adapt the hardware to already ex-
isting software. However, CLUE is not intended to guide
hardware development in the narrow sense.

Another application of CLUE is the design and tuning
of parallel programs run on parallel computers. In this ap-
plication, the user of CLUE may test the performance of his
program on hypothetical platforms, evaluating various
strategies of parallelization. In this case, the software is
adapted to hardware. This adaptation may take place dur-
ing software development, before actually purchasing the
target computing platform.

CLUE has been developed to simulate the execution of
real programs on arbitrary parallel computer configura-
tions. As MISS-PVM [Kvasnicka and Ueberhuber 1997], the
main part of CLUE, provides a virtual layer between the
application program and PVM, the application program
must use the message passing library PVM. It is, however,
possible to simulate the performance of other message pass-
ing libraries like MPI by using the PVM version. The sec-
ond part of CLUE, the Workstation User Simulator (WUS)
has been created to additionally simulate the effect of work-
station users starting competing processes, making it also
possible to run statistical models instead of real code, thus
speeding up simulation runs by several orders of magni-
tude.

RELATED WORK

In the past, several attempts have been made to simu-
late the performance of parallel programs. N-map [Fer-
scha:1996], for example, allows predicting the performance
of parallel programs by specifying code fragments only.
The PVM Simulator PS [Aversa et al.1998] follows an ap-
proach similar to ours, accepting full PVM programs or
program prototypes. PS, however, does not use execution
driven simulation but produces trace files describing the
communication pattern of the application under observa-
tion. These trace files then drive the simulation kernel to
derive simulation results. Tau [Sheehan et al. 1999] is a
performance extrapolation tool that also collects run-time
trace information of parallel programs written in pC++,
which is later used to drive the trace-driven simulation en-
gine. The same trace-driven approach is used in Dip [La-
barta et al. 1996].

In general, trace-driven approaches assume that the
communication patterns are fixed and do not depend on the
run-time situation. This assumption is valid, for example,
for most routines from the well-known linear algebra li-
brary SCALAPACK [Blackford et al. 1997]. In cases where
the communication depends on the run-time situation,
however, for example when simulating the effect of load
balancing mechanisms, this approach cannot be used, in
contrast to execution driven simulation.

Execution driven simulators include, for example, the
simulation platform SimOS [Rosenblum et al. 1997]. The
simulation kernels of this platform allow the simulation of
various processor models and hardware features with vary-
ing degree of complexity. Users of SimOS simply start the
binary executable of their code, which then drives the simu-
lator. This approach relies on the availability of a processor
model for the processor family the executable was compiled
for. Other parallel programming tools like Aims [Yan et al.
1995] observe real program executions and provide sophis-
ticated tools for post-mortem trace file analysis. In this ap-
proach, only the performance of parallel programs run on
available platforms can be evaluated.

THE CLUSTER EVALUATOR CLUE

The structure of the simulation and assessment tool
CLUE can be seen in Figure 1. CLUE is driven by an applica-
tion program containing the original code or an application
model holding only the code skeleton, like calls for mes-
sage passing or calls to advance the simulation time to
simulate the execution of CPU or I/O extensive code frag-
ments. CLUE is thus execution driven. The application pro-
gram or model calls functions provided by either WUS
(Workstation User Simulator) and MISS-PVM (Machine In-
dependent Simulation System for PVM 3). If WUS is not
used, then the original source code does not have to be

changed (with a minor exception), but only has to be re-
compiled and linked to the MISS-PVM l ibrary. If WUS is
used, the original source code must be changed to include
calls to WUS. Once started, CLUE will be driven by calls of
the application program and will advance its virtual time
according to the CPU time consumed by the application
program and the time used for inter-process communica-
tion.

MISS-PVM

PVM

WUS

Generation of computing time
of application program

Application / Application Model

Provides virtual
time
Models message

and network
transmission time

contention

Generation of
competing
processes
generated by
workstation
cluster users

Figure 1. Structure of CLUE.

CLUE has already been applied to different topics: �
Given a fixed program, find the optimum hardware
configuration that yields the highest performance for
the program. �
Given a fixed program and a certain budget limit, find
the optimum hardware that can be afforded. �
Given a set of hardware platforms, evaluate the per-
formance of a certain parallelization strategy. �
Evaluate different dynamic load balancing strategies.

MISS-PVM
MISS-PVM [Kvasnicka and Ueberhuber 1997] is imple-

mented as a layer between the application program and the
message passing library Parallel Virtual Machine (PVM).
The virtual layer for PVM redirects all calls to PVM to
their internal counterparts. Once being called, MISS-PVM
measures the CPU time consumed by the application pro-
gram since its last call to PVM.

This time is then added to the internally maintained
virtual time. After having performed this task, MISS-PVM
will eventually call PVM functions to perform a similar
(but not identical) work. For example, sending a message
from one process to another will result in several virtual
messages sent between the instances of the virtual layer.

As a result, the simulator user may observe the simu-
lated virtual time as well as the output trace files, contain-
ing information about all sent messages. These trace files
must be pre-processed and may be used for post mortem
visualization afterwards. This scheme has two major advan-
tages over normal trace file writing: the virtual layer for
PVM (i) uses its own simulated system time (i.e., the virtual
time) and (ii) makes a virtual machine available to the user.

Machine parameters are read from a configuration file at
program start. The configuration parameters may also be
changed dynamically during the program execution. Using
MISS-PVM it is possible to compare the performance of pro-
grams run on computers with different communication la-
tency and computing speed. WUS enables to additionally
create workstation background load of arbitrary complexity.
Time-measurements of different load balancing strategies
can be made quickly and enable the determination of the
optimum strategy for certain architectures.

Using MISS-PVM
PVM is a software system linking a network of hetero-

geneous computers in such a way that the user may assume
the existence of one single parallel computer, the virtual
parallel machine. It provides message passing and process
control routines for tasks running on any of the computers
being part of the virtual machine. User processes are con-
nected by TCP to a PVM daemon running on their ma-
chine. When sending a message to another process, the
sender will pass the message to its PVM daemon, which
will transmit the data to the PVM daemon running on the
receiver's computer. This daemon will then pass on the data
to the receiving process.

pvmd pvmd

Application Program Application Program

pvmV_send() pvmV_recv()

pvm_send()

libpvm3 libpvm3

TCP TCP

UDP

Network

pvm_recv()

Virtual Layer

Figure 2. Virtual layer for PVM.

User programs call PVM subroutines in order to send
messages or to create and terminate processes on any mem-
ber of the virtual machine. PVM provides a uniform inter-
face to user programs by hiding different implementations
and features of the various flavors of Unix and Windows. In
this way a user program may be run on a variety of differ-
ent computer systems without modification.

In Figure 2 a new level between the user program and
PVM is added, the virtual layer for PVM. This layer pro-
vides the same interface to the user program as PVM does,
itself containing no machine-dependent code. Thus, the vir-
tual layer may be used on many different machines.

When using the virtual layer in addition to PVM, the
simulator user is provided a virtual time, virtual machines
with arbitrary characteristics and output generation for
graphical post mortem visualization. The user programs as
well as the PVM level remain unchanged. The only differ-
ence is that an include file redirects PVM calls to their vir-
tual equivalents.

As a visualization program, ParaGraph may be used.
This graphical tool provides several animated windows,
which are, to a great extent, self-explanatory [Tomas and
Ueberhuber 1994, Heath 1993].

Virtual Time
The virtual layer for PVM uses an internal time that is

based on three components: �
Computation time is the CPU time consumed by exe-
cuting the user programs. This time is measured by
calling operating system calls. �
Communication time is calculated using the configu-
ration parameters of the virtual machine. �
Waiting time is simulated as the time a process waits
for the arrival of messages.
These three components are added to result in the vir-

tual time of each user process.

Virtual Machines
Virtual machines are defined in a file that is read at the

start of the simulation. The first line of this file contains the
parameters of the computer used for the master program
and as default for all programs started without an explicit
machine name or host type given. In the other lines, com-
ments (beginning with the symbol ‘#’), or additional ma-
chine or host type specifications can be put. For each line
possible parameters are: �

Name of the machine or host type. The machine can
either exist in reality or can be a virtual machine. �
Performance factor. This is a floating-point multi-
plier p for calculating the computation time. �
Initialization Delay. This is the time needed for
pvm_spawn(), as seen by the spawned program. �
Spawn Delay. This is the time spent in pvm_spawn(). �
Send Delay. This is the time used for sending a mes-
sage using pvm_send() or pvm_mcast(). This time
contains packing the message, resolving the address of
the host and starting the transmission (as far as the
sending process is involved). The actual send delay is
interpolated linearly between given points.

�
Receive Delay. This is the time used in calling the re-
ceive routines pvm_rcv(), pvm_nrecv() and
pvm_probe(). �
Transmission Delay. This is the time used to transfer
a message minus the send delay. It is typically a piece-
wise linear model. �
Packing Delay. This is the time used to pack the mes-
sage into the PVM send buffer.
Send and transmission delay may be specified for any

pair of hosts, they may also define sending and transmitting
messages from one host to itself, in case multiprocessor ma-
chines are to be modeled. Figure 3 shows the assumed
model for the send and transmission delay.

Program/Model 1

send time

Program/Model 2

virtual time

transmission
time

recv time

pvm_send()

pvm_recv()

Figure 3. Communication model.

If the actual performance model turns out to be of in-
sufficient accuracy, it can easily be modified in the configu-
ration file. A recompilation of the simulated program is not
required.

Development Process
In order to simulate the performance of parallel pro-

grams run on a set of hardware platforms, the following
steps must be carried out:
1. The parallel program using PVM must be developed.
2. In all source files, the PVM include file must be

changed to the MISS-PVM include file (not in Fortran).
3. The Makefile must be changed to link the MISS-PVM

library to the executable.
4. For each hardware configuration to simulate, a con-

figuration file has to be created. The parameters for the
computational speed and the network properties may
be either derived by measuring existing hardware, ex-
trapolating from known parameters, or by using vendor
specified information. The parameters used in the case

studies described later were derived by taking meas-
urements with standard benchmarking and specially
written programs.

5. Then the source files must be recompiled and linked to
the MISS-PVM library.

6. The simulation is then executed by starting the PVM
program as in a normal program run.

Distributed Simulation Protocol
In order to execute all events according to their virtual

time, MISS-PVM uses a conservative protocol for distributed
discrete event simulation based on an extra process called
MISSdaemon. The daemon keeps an internal list of all run-
ning PVM processes. Upon receiving messages, the dae-
mon updates its process list by calling the virtual version of
pvm_tasks(), which returns a list of all processes with the
exception of the MISSdaemon itself. Each entry in this list
can have one of the following states: �

Unknown. The process is believed to do work. �
Waiting for line. The process has called pvm_send(). �
Waiting for non -blocking receive. The process has
called pvm_probe() or pvm_nrecv() . �
Blocked receive. The process has called the MISS-PVM
version of pvm_recv() and is waiting for messages. �
Deleted. In this case, the process is removed from the
process list and is added to a deletion list.
Once the states of all processes are known, the next

event is chosen from the event list and is executed. This
may either be a sender waiting for the allowance to pro-
ceed, or the delivery of a message to a receiver. In the first
case, the sender is simply notified by a virtual message, in
the latter case, a virtual message is sent to the receiver, con-
taining information about the message size and the sender
PID. Upon reception of this message, the sender of a mes-
sage may proceed whereas the message receiver unlocks the
corresponding data waiting in an internal buffer and pre-
tends to having received the data at the respective virtual
time. The protocol needs a total of four virtual layer mes-
sages with fixed size and one user data message of arbitrary
size. Using the MISSdaemon, the order of messages at the
receiver's end is preserved.

THE WORK STATION USER SIMULATOR

The Workstation User Simulator (WUS) [Hlavacs and
Ueberhuber 1998] is the second part of CLUE. WUS simu-
lates the generation of competing processes, running in par-
allel on interactively used workstation clusters, and taking
away CPU cycles there. Processes can be generated by us-
ing fixed arrival and departure rates, variable arrival and
departure rates provided by trace files [Calzarossa and
Serazzi 1985], trace files of real processes [Zhou 1986] and
user behavior graphs [Calzarossa and Serazzi 1986].

By constructing stochastic models of real parallel ap-
plications or running real applications, different load bal-
ancing schemes can be simulated and compared with each
other. It is important to note that the competing processes
are not started in reality, but are only represented by list
entries in the virtual CPU (VCPU) queue of WUS. The
WUS VCPU is, however, tightly linked to the MISS-PVM
virtual time. Whenever a WUS process consumes VCPU
time, WUS increases the MISS-PVM virtual time accord-
ingly. On the other hand, if an application consumes real
CPU time between two adjacent calls to MISS-PVM, MISS-
PVM activates WUS where the consumed CPU time now
must compete for the VCPU with other WUS processes.
Figure 4 shows such a sequence of calls.

PVM3 call MISS-PVM PVM3

PVM3 call

Consume CPU secondsn

WUS

PVM3

MISS-PVM

Application

Figure 4. Real application consuming CPU time.

First, the real application calls a PVM function, which
is replaced by the according MISS-PVM call. MISS-PVM man-
ages the virtual time and communicates with other proc-
esses by means of virtual layer messages using PVM. Also,
MISS-PVM stores the amount of CPU time this process has
consumed so far. The real application consumes n real CPU
seconds and, in order to do some communication, finally
invokes a PVM call, again being replaced by the according
MISS-PVM call. The n real seconds are modified by MISS-
PVM according to the state of WUS and the virtual time is
increased.

WUS Scheduling
The application model calls WUS functions to state

that it wishes to be granted n VCPU seconds. WUS then
schedules its VCPU to all running WUS processes by using
priority scheduling as implemented in the Linux kernel,
driven by the standard UNIX nice levels.

Like in the processor sharing queuing discipline [Al-
len 1990], it is assumed that the time-slices scheduled to
each process are infinitely small (in contrast, e. g., the du-

ration of each time-slice on an x86-compatible computer
running Linux is 10 ms).

Using WUS
WUS mimics a UNIX computer (Figure 5). User mod-

els produce workload using trace files of real user sessions,
Poisson arrival processes with fixed and variable arrival
and departure rates, and user behavior graphs,.

CPU request from
the application model

Computer

Window
Process

User

Constant UBGTracefile Rates Rates
Variable

Figure 5. WUS structure.

Designers of parallel programs wishing to use WUS to
test load balancing strategies first have to sample statistical
data of the CPU requests of their real parallel applications.
Using this data, a statistical application model has to be
created. An application model program frame looks like the
following example.

do communication or initialization
comp = new Computer(Workload model);
while (Loop) {
 runtime = GetRandomRuntime();
 comp->RunProcess(runtime);
 loadavg = comp->LoadAverage(n);
 do communication or load bal ancing
}
collect results

The Unix Load Average
One important application of CLUE is the development

and assessment of dynamic load balancing strategies. Such
strategies observe the run-time behavior of parallel pro-
grams and identify overloaded and underloaded processors.
A processor overload may occur, (i) if one processor has
been assigned more work than others (this can be the case
if the amount of work necessary to compute the result is not
known in advance), or (ii) if workstation users interactively
start competing processes on one or more workstations.

The load balancing strategy thus must react to load
changes and may decide to transmit work from one proces-
sor to another. For measuring case (ii), usually the Unix
load average is used, i.e., the exponentially smoothed
length of the processor queue, holding all currently running

processes. The Unix load average tX̂ is defined to be

ttt XXX)1(ˆˆ
1 ββ −+=+ (1)

where tX is the number of running processes at time t.

The load average depends on]1,0[∈β , the exponential

smoothing constant. It defines, how much of the past
should be included into the current load estimate. If writing

)1/(+= NNβ , then 1
ˆ

+tX may also be interpreted as an

estimate for the arithmetic mean of the last N observations
1,,1,0, −=− NiX it Κ [Schlittgen and Streitberg 1995]. By

setting 984.0
61

60 ≈=β and calculating tX every second,

tX thus may be interpreted as the arithmetic mean number

of processes run in the last 60 seconds. Unix traditionally
calculates such estimates for the last 60 seconds, the last 5
minutes and the last 15 minutes. WUS allows the computa-
tion of such load averages for any N.

CASE STUDY: PARALLEL INTEGRATION

In order to demonstrate the applicability of CLUE and
to validate the simulation accuracy, several case studies
have been conducted.

In the first case study, a global bag of tasks is defined
to contain 10,000 definite integrals �

=
b

a

dxxfbaf)(],,[I (2)

for given integrands f(x) and given interval boundaries a
and b. This workload is then to be computed in parallel on
workstations being interconnected by Fast Ethernet. The
integrals are to be calculated using a globally adaptive
automatic integration algorithm [Piessens et al. 1983]. This
algorithm computes an approximation

],,[I],,[Q bafbaf ≈ (3)

and an error estimate
],,[I],,[Q]e[],,[E bafbaff,a,bbaf −=≈ (4)

such that
τ≤],,[E baf (5)

for a given error tolerance τ . The estimates],,[Q baf and

],,[E baf are calculated by evaluating f(x) at N points and

applying a so-called integration formula [Krommer and
Ueberhuber 1994], being a weighted sum of the integrand
values. Then, if (5) does not hold, the original interval [a,b]
is subdivided into two intervals]2/)(,[baa + and

],2/)[(bba + , and estimates (3) and (4) are again calcu-

lated for both subintervals. If the sum of the two error esti-
mates still does not fulfill (5), the interval with the largest
error estimate is chosen and further subdivided. This pro-
cedure, resulting in a possibly large number of subintervals
and therefore integrand evaluations thus depends on the

input data f, a and b in an unpredictable way and the
needed CPU time for obtaining (5) is not known a priori.
This algorithm is difficult to parallelize, as it is intrinsically
sequential. Also, if a large number of independent calcula-
tions for (2) are to be performed in parallel, a distribution
of the tasks a priori is difficult, as the CPU requirements of
each task is unknown and thus some processors might get
overloaded while others might soon be idle because their
tasks need only little CPU time.

For the integrand f(x), three basic integrand classes
were chosen: �

Oscillating integrands (7 families). �
Integrands with singularities, peaks or discontinuities
(8 families). �
Mixture families (6 families).
Each integrand family depends on a parameter

]1,0[∈α defining the severity of the integration problem

(2). The higher α is, the more integrand evaluations and
thus CPU time is needed to obtain (5). An example for an
oscillatory family is given by �

++
π

α α
2

0

1)600sin(dxxxe x . (6)

Figure 6 shows the number of integrand evaluations for
family (6) needed to fulfill the error requirement (5). The
results are given for different N-point integration formulas.

�����
	��������������������������
	����������������������! !�
	���������������������"$#&%('�)+*-,�%/.103254�#&26)7*-,�%(8

9 �:�; <:�; �:�; =:�; >:

�!��:�:�?=6:�:�!>�:�:�!:�:�:<�:�:��:�:=6:�:>�:�::

Figure 6. Function evaluations needed for oscillating
integrands.

A complete definition of the integrand families as well
as a mathematical explanation of the curve shapes can be
found in [Hlavacs 2000].

Each of the 10,000 tasks is defined by choosing one in-
tegrand family and one particular]1,0[∈α at random, de-

scribing the computation of exactly one definite integral. A
central master manages the bag of tasks.

The program has first been executed on a network of
workstations (NOW) consisting of five Sun workstations

with Sparc and UltraSparc processors and running the Sun
Solaris operating system. These workstations were con-
nected by a switched Fast Ethernet network yielding 100
Mbit/s bandwidth. Additionally, the program has been
simulated with CLUE.

Figure 7 shows the measured run-times and the simula-
tion results. It can be seen that in this scenario, the accu-
racy of CLUE is very high. The experiment also shows that
with more than four workstations, no more speed-up is ob-
served.

@�A�BDC3E�F7G�HJIK H!F�L�C�MNHJI
OQP&RTSVU�WYX

Z C3BV[\HJM�]�^(_`]�M�a�H?MbL

L

cdefgh

g d hg!f�hg!h�hi�hj�hd hf�hh

Figure 7. Measured run time vs. simulated run time (in
seconds) on the Sun NOW. Task message size is 10 KB.

The same experiment has been repeated on the Beo-
wulf cluster of SMPs maintained by the Institute for Physi-
cal and Theoretical Chemistry of the Vienna University of
Technology, described in a later case study. This cluster
consists of five PCs containing two processors each. Figure
8 shows the simulation results. Again the simulation result
yields high accuracy.

kml�nVo�p�q!r�sJtu s!q7vNo�wNsJtxzy({T|~}����

� o�n��\s?w��7�����7wN��s?w�v

v

�!�����������

������� �������� ��������J��

Figure 8. Measured run time vs. simulated run time (in
seconds). Task message size is 500 KB.

CASE STUDY: LOAD INDEX EVALUATION

In this case study, the WUS load average simulation is
used to find an optimum β for predicting the future work-

station workload. One obvious question is, which β is best

to predict the future workload of a workstation, and thus
the time it takes to compute a task under a given workload.

Sampled Workload
In order to obtain realistic background workload, trac-

ing programs were started on one particular network of
workstations being maintained at the Vienna University of
Technology. The observed workstations contained DEC
Alpha processors under the OSF/1 operating system. The
workload was sampled during the period from March 15th,
1998 to May 13th, 1998. For all visible Unix processes, the
sampled workload parameters were: �

Time �
Process ID (PID) �
Parent PID �
CPU time consumed so far �
CPU time consumed by all children �
Executable name
Figure 9 shows a typical workstation workload as has

been observed on a Monday. It can be seen, how the time of
day influences the arrival of processes, thus reflecting the
workload that is generated by interactive users. The work-
load trace files indicate large fluctuations of workload dur-
ing the day. Especially the faster machines are more likely
to get very high workloads. ���J���������V���!�J���m m¡-�V¢$���D£¤�-¥�¦¨§J�

©«ª¬V®1¯7°�±m²?³ ´!µ�¶ ·7·¸�¹ ¶ ·�·¸ ´�¶ ·7·º ¶ ·7··6¶ ·�·

º»

µ ¼
´ ¸
·

Figure 9. Arrival of processes per minute on one par-

ticular workstation day.

Simulation Scenario
For evaluating different load averages, the following

simulation scenario was chosen: The workload of one
workstation day was provided to WUS, which would use
this data to create virtual processes. Beginning at time t, a
process consuming]60,1[∈s CPU seconds was then con-

tinuously created. At start time, the load average (1) was
used to predict the actual run-time of this process under the
observed load situation. After the process consumed the
CPU time, the prediction error, i.e., the difference between
the predicted and the actual run-time was computed. Then,
another process consuming s CPU seconds was immedi-
ately created.

Simulation Results
Figure 10 shows the simulation results. As a measure

for the prediction quality, the figures show the mean error
of all predictions for one particular tuple),(sβ . It can be

seen that when averaging over the whole day and for proc-
esses consuming only a few CPU seconds, the best predic-
tion is given by 0=β , which according to (1) denotes the

actual number of running processes. As processes consume
more CPU seconds, higher values of β produce better re-

sults. ½z¾?¿7ÀÂÁ�ÃÄ¾?ÅmÆÇbÈbÆÉ7À�¾�ÃÄÃNÉ7Ã
ÊmË Ê7ÌÊmË Ê�ÍÊmË Ê7ÎÊmË Ê�Ï

ÐÒÑÔÓ¤Õ ¾?Ç�É�ÀmÅ Õ
Î�ÊÏ7ÊÖ Ê×�ÊØ7ÊÙ?ÊÚ

Ê6Û Ì Ê6Û Î ÊmÛ Ö ÊmÛ Ø Ê

Figure 10. Simulation results using the workload of
one particular workstation from 00:00 to 24:00.

CASE STUDY: SCALAPACK ON PC CLUSTERS

In this case study it is demonstrated how to use CLUE
for simulating the performance of standard software run on
PC clusters. A PC cluster typically consists of N of-the-shelf
PCs connected with each other over standard Fast Ethernet
or some gigabit class network, each PC containing one, two
or four Intel compatible processors working in symmetric
shared memory (SMP) mode. PC clusters running the
Linux operating system are often called Beowulf clusters
and have become popular in the last few years due to the
fact that they deliver high computing power at a reasonable
price. Due to the availability of a large number of different
PC hardware components, it is difficult to decide which
cluster configuration yields the best performance for a
given application. Simulating different cluster configura-
tions before deciding to buy one particular may aid this
decision process. In the carried out experiments, two spe-
cific PC cluster configurations have been investigated.

The Vienna Cluster.
The first PC cluster of the research project AURORA

(http://www.vcpc.univie.ac.at/aurora/) was built for coop-
eration between the Institutes for Applied and Numerical
Mathematics and Physical and Theoretical Chemistry, both
part of the Vienna University of Technology. It consists of
one master and five dual Pentium II slaves using Fast
Ethernet communication. The master is used as file and net
server and does all the compilation work.

Figure 11 shows the send and transmission times ob-
served on the Vienna cluster. Both sender and receiver run
on the same node, thus the message is not sent over the net-
work. Also, the piecewise linear model used for the simula-
tion is shown as well. These measurements were conducted
by running specially written timing software, using both
PVM and ordinary UDP packets for time synchronization.

Additionally, for the case of sending messages from
one sender to several receivers at the same time, contention
has been observed that increases both the send and trans-
mission time.

ÜÞÝ�ßmà?ááà?ßzâ�ãNä�å�æÄç�èæNæNèÝ�å�â�èçDàÜQà?ä�æNé6ãNà?ßzâ�ãNä�å�æNçDè�æÄæNèÝ�å�â�èçDàÜÞÝ�ßmà?ááà?ßQê6à?å�ßzâ�èçDàÜQà?ä�æNé6ãNà?ßQê6à?å�ßQâ«è�çVà
ë~ì3íYíïî(ð(ñ-ò�ó6ôJñ-ì5ð/õ~ñ-í�ö

ÜQàJæÄæNä7÷�àøêmèúù�à�û�üøýÒþ

æ

ÿ����ÿ����ÿ����ÿÿ����	�ÿ����
�

ÿ������
ÿ����
�
ÿ������
ÿ�� ��
ÿ�� �
�

Figure 11. Send and transmission time for the Vienna

cluster. Sender and receiver are on the same node.

The Aachen Cluster
The PC cluster Siemens hpcLine consists of 16 dual

processor boards using 400 MHz Pentium II. The nodes
communicate either via switched Fast Ethernet or SCI
(Scalable Coherent Interface). The computational factor of
nodes of the Aachen cluster has been measured to be 0.91
relative to the Vienna cluster, where simulation runs have
been carried out. Additionally, the SCI network was only
available for the MPI version of BLACS. Thus, the commu-
nication parameters and the performance of the real runs
were collected for the MPI version of BLACS, whereas the
simulation runs were still carried out on the Vienna cluster
using the PVM version of the BLACS. Communication
models for the Aachen cluster SCI network can be found in
[Hlavacs 2000].

Simulated Software
The standard parallel software chosen for simulation

consists of subroutines of SCALAPACK [Blackford et al.
1997], the parallel version of LAPACK [Anderson et al.
1999], the well-known library for linear algebra. Both
LAPACK and SCALAPACK are based on calls to the basic
linear algebra subprograms (BLAS), their parallel version
being called PBLAS. Both PBLAS and SCALAPACK use the
basic linear algebra communication subroutines (BLACS)
for communication, the BLACS itself being based on PVM
or MPI.

Three SCALAPACK routines were used to demonstrate
the usefulness and reliability of CLUE: �

Matrix -Matrix Multiplication. The routine PBLAS/
pdgemm is used to multiply two matrices. �
Cholesky Factorization. The routine SCALAPACK/
pdpotrf is used to compute the Cholesky factoriza-
tion of a symmetric, positive definite matrix. �
LU Factorization. The routine SCALAPACK/
pdgetrf is used to compute the LU-factorization of a
general matrix.
In this case study matrix sizes have been set to

20002000× .

Simulation Results
For the real runs, the PVM version of SCALAPACK and

PBLAS were used (on the Vienna cluster). Each simulation
run was carried out on one workstation only. All executa-
bles print out their result in terms of the needed wall clock
time.

The simulation runs should answer the following ques-
tions:
1. Do the real observations and the simulated runs have

the same qualitative properties?
2. Do the real observations and the simulated runs have

the same quantitative properties?
3. Can the simulation results be used to evaluate the per-

formance of workstations clusters a priori?
In the following figures, the observed and simulated

wall clock times are plotted against the processor grid used.
Such a grid or 2-dimensional mesh is always assumed to
define the topology of the parallel computer, even if in real-
ity this is a workstation cluster connected over a bus, star or
ring topology. Each processor is assigned to a certain place
in the virtual mesh topology. Basically, an MN × grid
means that MN × processors were used for the computa-
tion. The relation of N to M defines the communication pat-
tern used, yielding different speed-ups as the below results
show. As can be seen, simulation results obtained for a PC
cluster with slow communication (using Fast Ethernet) are
very accurate. The simulation highly satisfactory has cap-
tured both qualitative and quantitative performance behav-

ior of this Beowulf cluster. Inaccuracies only occur for
some runs of matrix-matrix multiplication, where the simu-
lation does not reflect contention.

In contrast to simulating the performance of the PVM
versions of SCALAPACK and PBLAS by using the same PVM
code, simulating their MPI versions by using the PVM ver-
sions on a different type of node is far more complicated.
Still, the qualitative behavior of the parallel programs is ac-
curately simulated, while the quantitative results are some-
times a little misleading.

�������������������! "��#$��%
������������&�'(�)��*�+�,%
- �.�,���(���������! "��#$��%
- �.�,���(��&�'(�)��*�+�,%

/ �!��01���2�

3 *$��%
4)5,67�5�74)5984)5�74)5,4:;5,:=<:;5�>:;5�?:;5�@:;5�A:;5,6:;5�8:;5�7:B5,4:B5�:

CD

E D

FD

GD

H,D

D

Figure 12. Cholesky factorization run time.

It may thus be concluded, that performance compari-
sons between different workstation clusters are possible,
though experiments must be carefully designed and inter-
preted. The qualitative behavior of parallel programs run-
ning on a workstation cluster though can be simulated ac-
curately, independent of the use of PVM or MPI.

It is thus possible to analyze the behavior of parallel
programs and predict their performance, depending on
cluster parameters. Simulation results can be used to inves-
tigate the influence of different parameters of the simulated
workstation or PC cluster, in order to plan new hardware
configurations or make an educated choice between several
alternatives.

CONCLUSION

In this work, the simulation and assessment tool CLUE
has been described. It consists of MISS-PVM, the actual
simulation layer, and WUS, the Workstation User Simula-
tor. MISS-PVM allows the simulation of parallel programs
using the PVM library for message passing. The simulation
may be carried out on one or several computers, whereas
the properties of the virtually assumed parallel computer
are defined in a configuration file. The conservative dis-
tributed discrete event simulation protocol guarantees cor-
rect event order.

By linking MISS-PVM to WUS, real applications or sta-
tistical models can be used to simulate load balancing on

heterogeneous, interactively used workstation clusters. In
order to support this task, WUS allows priority scheduling
and produces load estimates similar to the standard UNIX
load metrics, thus simulating the effect of concurrently run-
ning processes.

The applicability and accuracy has been demonstrated
in three case studies. Simulation runs show good accuracy
when compared to real runs.

REFERENCES

[Allen 1990] Allen A. O.: Probability, Statistics and Queuing Theory. Aca-
demic Press, Orlando 1990.

[Anderson et al. 1999] Anderson E. et. al: Lapack Users' Guide, 3rd ed.
SIAM Press, Philadelphia 1999.

[Aversa et al. 1998] Aversa, R., Mazzeo, A., Mazzocca, N., Villano, U.:
“Heterogeneous system performance prediction and analysis using PS”,
IEEE Concurrency 6-3 (1998), pp. 20—29.

[Blackford et al. 1997] Blackford L. S. et al.: ScaLapack Users' Guide.
SIAM Press, Philadelphia 1997.

[Calzarossa and Serazzi 1985] Calzarossa M., Serazzi G.: “A Characteriza-
tion of the Variation in Time of Workload Arrival Patterns”, IEEE
Transactions on Computers C-34-2 (1985), pp. 156—162.

[Calzarossa and Serazzi 1986] Calzarossa M., Serazzi G.: “System Perform-
ance with UserBehavior Graphs”, Performance Evaluation 11 (1990),
pp. 155—164.

[Ferscha 1996] Ferscha, A., Johnson, J.: Performance prototyping of parallel
applications in N-map”, In Proceedings of the IEEE Second Int. Con-
ference on Algorithms and Architectures for Parallel Processing,
IEEE CS Press 1996, pp. 84—91.

[Heath 1993] Heath M. T.: “Recent Developments and Case Studies in Per-
formance Visualization using ParaGraph”, In Performance Measure-
ment and Visualization of Parallel Systems (G. Haring, G. Kotsis,
eds.), Elsevier Science Publishers, Amsterdam 1993, pp. 175—200.

[Hlavacs and Ueberhuber 1998] Hlavacs H., Ueberhuber C. W.: “Simulating
Load Balancing on Workstations with Irregularly Fluctuating Capac-
ity”, AURORA Technical Report TR1998-11, Technical University of
Vienna 1998.

[Hlavacs and Ueberhuber 1999] Hlavacs H, Ueberhuber C. W.: “Simulating
Load Balancing on Heterogeneous Workstation Clusters”, in
ACPC'99, Springer Verlag, Berlin 1999.

[Hlavacs 2000] Hlavacs H.: “Cluster Computing - High Performance Solu-
tions of Problems with Unknown Complexity”, Ph. D. dissertation,
Technical University of Vienna, Austria, November 2000.

[Krommer and Ueberhuber 1994] Krommer A. R., Ueberhuber C. W.: Nu-
merical Integration on Advanced Computer System,. Springer-
Verlag, Berlin Heidelberg New York 1994.

[Kvasnicka and Ueberhuber 1997] Kvasnicka D. F., Ueberhuber C. W.: “De-
veloping Architecture Adaptive Algorithms Using Simulation with
MISS-PVM for Performance Prediction”, In 11th ACM International
Conference on Supercomputing, 1997, pp. 333—339.

[Kvasnicka 2000] Kvasnicka D.: “High Performance Computing in Materials
Science”, Ph. D. dissertation, Technical University of Vienna, Austria,
September 2000.

[Labarta et al. 1996] Labarta J. et al.: “Dip: A parallel program development
environment”, In Proc. Euro-Par '96, Vol. II. Springer-Verlag, Berlin
Heidelberg New York 1996, pp. 665—674.

[Piessens et al. 1983] Piessens A., De Doncker E., Kapenga J., Ueberhuber
C.W., Kahaner D.: Quadpack, A Subroutine Package for Automatic
Integration. Springer-Verlag, Berlin Heidelberg New York 1983.

[Sheehan et al. 1999] Sheehan T., Malony A., Shende S.: “Runtime Monitor-
ing Framework for the TAU Profiling System”, In Proceedings of the
Third International Symposium on Computing in Object-Oriented
Parallel Environments (ISCOPE'99), San Francisco, CA, December
1999.

 [Rosenblum et al. 1997] Rosenblum M., Bugnion E., Devine S., Herrod S.:
“Using the SimOS Machine Simulator to Study Complex Computer
Systems”, ACM TOMACS Special Issue on Computer Simulation,
1997.

[Schlittgen and Streitberg 1995] Schlittgen R., Streitberg B.: Zeit-
reihenanalyse. R. Oldenbourg Verlag, Muenchen Wien 1995.

[Tomas and Ueberhuber 1994] Tomas G., Ueberhuber C.W.: Visualization of
Scientific Parallel Programs. Springer-Verlag, Berlin Heidelberg New
York 1994.

[Yan et al. 1995] Yan, J., Sarukkai, S., Mehra, P.: “Performance measure-
ment, visualization and modeling of parallel and distributed programs
using the Aims toolkit”, Software Practice and Experience 25-4
(1995), pp. 429—461.

[Zhou 1986] Zhou S.: “A Trace-Driven Simulation Study of Dynamic Load
Balancing”, IEEE Transactions on Software Engineering 14-9 (1988),
pp. 1327—1341.

BIOGRAPHIES

Dieter F. Kvasnicka received his Masters degree in com-
puter science in 1994 and his Ph. D. in 2000, both from the Vi-
enna University of Technology. Since 1997 he is employed at the
Institute of Physical and Theoretical Chemistry of the Vienna
University of Technology. He is a member of the Special Re-
search Project AURORA of the Austrian science fund FWF and
works on numerical algorithms for high performance computing in
materials science, including the development of message passing
parallel applications and program libraries. Dieter Kvasnicka is
the author of several publications and technical reports about
parallel simulation, cluster computing, blocking techniques in
symmetric eigenproblems and other numerical software, and high
performance linear algebra and FFT algorithms implemented
using High Performance Fortran, and he presented his findings on
many international conferences and workshops.

Helmut Hlavacs received his Masters degree (Mathematics)
in 1993 at the Vienna University of Technology, followed by his
Ph.D. in 2000. From 1998 to 2000 he worked as a researcher for
the European research project BISANTE at the Institute for Com-
puter Science and Business Informatics at the University of Vi-
enna. Since 2000 he is Assistant Professor at this institute. Fur-
thermore he is member of the Austrian science project AURORA
in the area of numerical algorithms for high-performance comput-
ing. Helmut Hlavacs is author of several publications, technical
reports and project deliverables in the area of numerical mathe-
matics, high-performance computing, workload modeling and net-
work simulation.

Christoph W. Ueberhuber received his Masters degree in
1973 and his Ph.D. in 1976, both in the field of Mathematics. In
1973 he became Assistant Professor for Numerical Mathematics
at the Institute for Numerical and Applied Mathematics, Vienna
University of Technology, where he advanced to a tenure position
in 1980. Since 1998 he is Associate Professor there.

He took part in many completed research projects in the area
of numerical analysis, scientific computing, high performance
computing, graphical data processing and image processing, tech-
nical data processing, and environmental protection. He also par-
ticipated in two major research projects in the area of parallel
computing and numerical algorithms and software for high-per-
formance computers. He is author of 11 books and more than 100
publications in journals, books, and conference proceedings.

