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ABSTRACT 

In this paper the simulation and assessment tool CLUE 
is described. This tool is able to simulate the performance 
of parallel programs using the message passing library 
PVM for communication, run on arbitrary parallel ma-
chines, including PC clusters. CLUE redirects calls to PVM 
to its own functions, providing an additional layer between 
an application and PVM. The simulation is driven by the 
application execution itself. The applicability of CLUE is 
demonstrated in three case studies, where (i) different load 
predictors are compared, and (ii) the performance of a mas-
ter-slave parallelization and (iii) subroutines of the widely 
used ScaLapack linear algebra package are simulated. 

INTRODUCTION  

The increasing number of available parallel computers 
or clusters of workstations, interconnected with high speed 
networks, has created a need for efficient parallel software. 
Developing such is difficult due to the additional communi-
cation overhead often necessary. Factors influencing the 
efficiency are, for instance, the problem size, the percentage 
of sequential code, the speed of the communication system, 
the communication/computation ratio and the number and 
type of processors used. Parallel programs running effi-
ciently on one parallel computer might be very inefficient 
on others. 

There are several ways of comparing algorithms for 
parallel computers, all suffering from particular drawbacks. 
Analytical models are very difficult to create, might be 
based on simplifying assumptions and often cannot catch 
the possibly complicated structure of the simulated envi-
ronment or the parallel programs. 

Comparison by executing the programs is restricted to 
available parallel computers only. Interesting properties 
like the program behavior on various platforms, intercon-
nected with different networks, cannot be obtained. Fur-
thermore, the execution of parallel programs as part of an 
extensive study to gain insight into program characteristics 
might use up large amounts of CPU time, thus consuming 
computing time possibly needed otherwise. 

Simulation tries to bridge the gap between analytical 
models and extensive tests on existing computer platforms. 
When simulating the execution of parallel programs, in 
principle the performance of any program or program 
model running on arbitrary parallel computers may be ana-
lyzed. 

In this paper, the simulation and assessment tool CLUE 
(cluster evaluator) is introduced, which is able to simulate 
the performance of message passing programs executed on 
parallel computers. CLUE has been specifically designed to 
simulate program runs on clusters of workstations or PCs, 
yet CLUE may also simulate other parallel computers like 
parallel supercomputers. 

One important application of CLUE is the simulation of 
the performance of parallel programs run on clusters of 
SMPs a priori, i.e., before running them on the real hard-
ware. This way, a potential cluster customer may simulate 
the performance impact of certain configuration decisions 
before actually buying the cluster. The idea behind this ap-
plication is therefore to adapt the hardware to already ex-
isting software. However, CLUE is not intended to guide 
hardware development in the narrow sense. 

Another application of CLUE is the design and tuning 
of parallel programs run on parallel computers. In this ap-
plication, the user of CLUE may test the performance of his 
program on hypothetical platforms, evaluating various 
strategies of parallelization. In this case, the software is 
adapted to hardware. This adaptation may take place dur-
ing software development, before actually purchasing the 
target computing platform. 

CLUE has been developed to simulate the execution of 
real programs on arbitrary parallel computer configura-
tions. As MISS-PVM [Kvasnicka and Ueberhuber 1997], the 
main part of CLUE, provides a virtual layer between the 
application program and PVM, the application program 
must use the message passing library PVM. It is, however, 
possible to simulate the performance of other message pass-
ing libraries like MPI by using the PVM version. The sec-
ond part of CLUE, the Workstation User Simulator (WUS) 
has been created to additionally simulate the effect of work-
station users starting competing processes, making it also 
possible to run statistical models instead of real code, thus 
speeding up simulation runs by several orders of magni-
tude. 



RELATED WORK  

In the past, several attempts have been made to simu-
late the performance of parallel programs. N-map [Fer-
scha:1996], for example, allows predicting the performance 
of parallel programs by specifying code fragments only. 
The PVM Simulator PS [Aversa et al.1998] follows an ap-
proach similar to ours, accepting full PVM programs or 
program prototypes. PS, however, does not use execution 
driven simulation but produces trace files describing the 
communication pattern of the application under observa-
tion. These trace files then drive the simulation kernel to 
derive simulation results. Tau [Sheehan et al. 1999] is a 
performance extrapolation tool that also collects run-time 
trace information of parallel programs written in pC++, 
which is later used to drive the trace-driven simulation en-
gine. The same trace-driven approach is used in Dip [La-
barta et al. 1996]. 

In general, trace-driven approaches assume that the 
communication patterns are fixed and do not depend on the 
run-time situation. This assumption is valid, for example, 
for most routines from the well-known linear algebra li-
brary SCALAPACK [Blackford et al. 1997]. In cases where 
the communication depends on the run-time situation, 
however, for example when simulating the effect of load 
balancing mechanisms, this approach cannot be used, in 
contrast to execution driven simulation. 

Execution driven simulators include, for example, the 
simulation platform SimOS [Rosenblum et al. 1997]. The 
simulation kernels of this platform allow the simulation of 
various processor models and hardware features with vary-
ing degree of complexity. Users of SimOS simply start the 
binary executable of their code, which then drives the simu-
lator. This approach relies on the availability of a processor 
model for the processor family the executable was compiled 
for. Other parallel programming tools like Aims [Yan et al. 
1995] observe real program executions and provide sophis-
ticated tools for post-mortem trace file analysis. In this ap-
proach, only the performance of parallel programs run on 
available platforms can be evaluated. 

THE CLUSTER EVALUATOR CLUE  

The structure of the simulation and assessment tool 
CLUE can be seen in Figure 1. CLUE is driven by an applica-
tion program containing the original code or an application 
model holding only the code skeleton, like calls for mes-
sage passing or calls to advance the simulation time to 
simulate the execution of CPU or I/O extensive code frag-
ments. CLUE is thus execution driven. The application pro-
gram or model calls functions provided by either WUS 
(Workstation User Simulator) and MISS-PVM (Machine In-
dependent Simulation System for PVM 3). If WUS is not 
used, then the original source code does not have to be 

changed (with a minor exception), but only has to be re-
compiled and linked to the MISS-PVM l ibrary. If WUS is 
used, the original source code must be changed to include 
calls to WUS. Once started, CLUE will be driven by calls of 
the application program and will advance its virtual time 
according to the CPU time consumed by the application 
program and the time used for inter-process communica-
tion.  
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Figure 1. Structure of CLUE. 

CLUE has already been applied to different topics: �
Given a fixed program, find the optimum hardware 
configuration that yields the highest performance for 
the program. �
Given a fixed program and a certain budget limit, find 
the optimum hardware that can be afforded. �
Given a set of hardware platforms, evaluate the per-
formance of a certain parallelization strategy. �
Evaluate different dynamic load balancing strategies. 

MISS-PVM 
MISS-PVM [Kvasnicka and Ueberhuber 1997] is imple-

mented as a layer between the application program and the 
message passing library Parallel Virtual Machine (PVM). 
The virtual layer for PVM redirects all calls to PVM to 
their internal counterparts. Once being called, MISS-PVM 
measures the CPU time consumed by the application pro-
gram since its last call to PVM. 

This time is then added to the internally maintained 
virtual time. After having performed this task, MISS-PVM 
will eventually call PVM functions to perform a similar 
(but not identical) work. For example, sending a message 
from one process to another will result in several virtual 
messages sent between the instances of the virtual layer. 

As a result, the simulator user may observe the simu-
lated virtual time as well as the output trace files, contain-
ing information about all sent messages. These trace files 
must be pre-processed and may be used for post mortem 
visualization afterwards. This scheme has two major advan-
tages over normal trace file writing: the virtual layer for 
PVM (i) uses its own simulated system time (i.e., the virtual 
time) and (ii) makes a virtual machine available to the user. 



Machine parameters are read from a configuration file at 
program start. The configuration parameters may also be 
changed dynamically during the program execution. Using 
MISS-PVM it is possible to compare the performance of pro-
grams run on computers with different communication la-
tency and computing speed. WUS enables to additionally 
create workstation background load of arbitrary complexity. 
Time-measurements of different load balancing strategies 
can be made quickly and enable the determination of the 
optimum strategy for certain architectures. 

Using MISS-PVM 
PVM is a software system linking a network of hetero-

geneous computers in such a way that the user may assume 
the existence of one single parallel computer, the virtual 
parallel machine. It provides message passing and process 
control routines for tasks running on any of the computers 
being part of the virtual machine. User processes are con-
nected by TCP to a PVM daemon running on their ma-
chine. When sending a message to another process, the 
sender will pass the message to its PVM daemon, which 
will transmit the data to the PVM daemon running on the 
receiver's computer. This daemon will then pass on the data 
to the receiving process. 
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Figure 2. Virtual layer for PVM. 

User programs call PVM subroutines in order to send 
messages or to create and terminate processes on any mem-
ber of the virtual machine. PVM provides a uniform inter-
face to user programs by hiding different implementations 
and features of the various flavors of Unix and Windows. In 
this way a user program may be run on a variety of differ-
ent computer systems without modification.  

In Figure 2 a new level between the user program and 
PVM is added, the virtual layer for PVM. This layer pro-
vides the same interface to the user program as PVM does, 
itself containing no machine-dependent code. Thus, the vir-
tual layer may be used on many different machines. 

When using the virtual layer in addition to PVM, the 
simulator user is provided a virtual time, virtual machines 
with arbitrary characteristics and output generation for 
graphical post mortem visualization. The user programs as 
well as the PVM level remain unchanged. The only differ-
ence is that an include file redirects PVM calls to their vir-
tual equivalents. 

As a visualization program, ParaGraph may be used. 
This graphical tool provides several animated windows, 
which are, to a great extent, self-explanatory [Tomas and 
Ueberhuber 1994, Heath 1993]. 

Virtual Time  
The virtual layer for PVM uses an internal time that is 

based on three components: �
Computation time is the CPU time consumed by exe-
cuting the user programs. This time is measured by 
calling operating system calls. �
Communication time is calculated using the configu-
ration parameters of the virtual machine.  �
Waiting time  is simulated as the time a process waits 
for the arrival of messages. 
These three components are added to result in the vir-

tual time of each user process.  

Virtual Machines  
Virtual machines are defined in a file that is read at the 

start of the simulation. The first line of this file contains the 
parameters of the computer used for the master program 
and as default for all programs started without an explicit 
machine name or host type given. In the other lines, com-
ments (beginning with the symbol ‘#’), or additional ma-
chine or host type specifications can be put. For each line 
possible parameters are: �

Name of the machine or host type. The machine can 
either exist in reality or can be a virtual machine. �
Performance factor. This is a floating-point multi-
plier p for calculating the computation time.  �
Initialization Delay.  This is the time needed for 
pvm_spawn(), as seen by the spawned program.  �
Spawn Delay. This is the time spent in pvm_spawn().  �
Send Delay. This is the time used for sending a mes-
sage using pvm_send() or pvm_mcast(). This time 
contains packing the message, resolving the address of 
the host and starting the transmission (as far as the 
sending process is involved). The actual send delay is 
interpolated linearly between given points. 



�
Receive Delay. This is the time used in calling the re-
ceive routines pvm_rcv(), pvm_nrecv()  and 
pvm_probe(). �
Transmission Delay. This is the time used to transfer 
a message minus the send delay. It is typically a piece-
wise linear model. �
Packing Delay. This is the time used to pack the mes-
sage into the PVM send buffer. 
Send and transmission delay may be specified for any 

pair of hosts, they may also define sending and transmitting 
messages from one host to itself, in case multiprocessor ma-
chines are to be modeled. Figure 3 shows the assumed 
model for the send and transmission delay. 
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Figure 3. Communication model. 

If the actual performance model turns out to be of in-
sufficient accuracy, it can easily be modified in the configu-
ration file. A recompilation of the simulated program is not 
required. 

Development Process 
In order to simulate the performance of parallel pro-

grams run on a set of hardware platforms, the following 
steps must be carried out: 
1. The parallel program using PVM must be developed. 
2. In all source files, the PVM include file must be 

changed to the MISS-PVM include file (not in Fortran). 
3. The Makefile must be changed to link the MISS-PVM 

library to the executable. 
4. For each hardware configuration to simulate, a con-

figuration file has to be created. The parameters for the 
computational speed and the network properties may 
be either derived by measuring existing hardware, ex-
trapolating from known parameters, or by using vendor 
specified information. The parameters used in the case 

studies described later were derived by taking meas-
urements with standard benchmarking and specially 
written programs. 

5. Then the source files must be recompiled and linked to 
the MISS-PVM library. 

6. The simulation is then executed by starting the PVM 
program as in a normal program run. 

Distributed Simulation Protocol 
In order to execute all events according to their virtual 

time, MISS-PVM uses a conservative protocol for distributed 
discrete event simulation based on an extra process called 
MISSdaemon. The daemon keeps an internal list of all run-
ning PVM processes. Upon receiving messages, the dae-
mon updates its process list by calling the virtual version of 
pvm_tasks(), which returns a list of all processes with the 
exception of the MISSdaemon itself. Each entry in this list 
can have one of the following states: �

Unknown. The process is believed to do work. �
Waiting for line.  The process has called pvm_send(). �
Waiting for non -blocking receive. The process has 
called pvm_probe() or pvm_nrecv() . �
Blocked receive. The process has called the MISS-PVM 
version of pvm_recv()  and is waiting for messages. �
Deleted. In this case, the process is removed from the 
process list and is added to a deletion list. 
Once the states of all processes are known, the next 

event is chosen from the event list and is executed. This 
may either be a sender waiting for the allowance to pro-
ceed, or the delivery of a message to a receiver. In the first 
case, the sender is simply notified by a virtual message, in 
the latter case, a virtual message is sent to the receiver, con-
taining information about the message size and the sender 
PID. Upon reception of this message, the sender of a mes-
sage may proceed whereas the message receiver unlocks the 
corresponding data waiting in an internal buffer and pre-
tends to having received the data at the respective virtual 
time. The protocol needs a total of four virtual layer mes-
sages with fixed size and one user data message of arbitrary 
size. Using the MISSdaemon, the order of messages at the 
receiver's end is preserved. 

THE WORK STATION USER SIMULATOR  

The Workstation User Simulator (WUS) [Hlavacs and 
Ueberhuber 1998] is the second part of CLUE. WUS simu-
lates the generation of competing processes, running in par-
allel on interactively used workstation clusters, and taking 
away CPU cycles there. Processes can be generated by us-
ing fixed arrival and departure rates, variable arrival and 
departure rates provided by trace files [Calzarossa and 
Serazzi 1985], trace files of real processes [Zhou 1986] and 
user behavior graphs [Calzarossa and Serazzi 1986]. 



By constructing stochastic models of real parallel ap-
plications or running real applications, different load bal-
ancing schemes can be simulated and compared with each 
other. It is important to note that the competing processes 
are not started in reality, but are only represented by list 
entries in the virtual CPU (VCPU) queue of WUS. The 
WUS VCPU is, however, tightly linked to the MISS-PVM 
virtual time. Whenever a WUS process consumes VCPU 
time, WUS increases the MISS-PVM virtual time accord-
ingly. On the other hand, if an application consumes real 
CPU time between two adjacent calls to MISS-PVM, MISS-
PVM activates WUS where the consumed CPU time now 
must compete for the VCPU with other WUS processes. 
Figure 4 shows such a sequence of calls.  

PVM3 call MISS-PVM PVM3
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Figure 4. Real application consuming CPU time. 

First, the real application calls a PVM function, which 
is replaced by the according MISS-PVM call. MISS-PVM man-
ages the virtual time and communicates with other proc-
esses by means of virtual layer messages using PVM. Also, 
MISS-PVM stores the amount of CPU time this process has 
consumed so far. The real application consumes n real CPU 
seconds and, in order to do some communication, finally 
invokes a PVM call, again being replaced by the according 
MISS-PVM call. The n real seconds are modified by MISS-
PVM according to the state of WUS and the virtual time is 
increased. 

WUS Scheduling 
The application model calls WUS functions to state 

that it wishes to be granted n VCPU seconds. WUS then 
schedules its VCPU to all running WUS processes by using 
priority scheduling as implemented in the Linux kernel, 
driven by the standard UNIX nice levels.  

Like in the processor sharing queuing discipline [Al-
len 1990], it is assumed that the time-slices scheduled to 
each process are infinitely small (in contrast, e. g., the du-

ration of each time-slice on an x86-compatible computer 
running Linux is 10 ms).  

Using WUS 
WUS mimics a UNIX computer (Figure 5). User mod-

els produce workload using trace files of real user sessions, 
Poisson arrival processes with fixed and variable arrival 
and departure rates, and user behavior graphs,. 
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Figure 5. WUS structure. 

Designers of parallel programs wishing to use WUS to 
test load balancing strategies first have to sample statistical 
data of the CPU requests of their real parallel applications. 
Using this data, a statistical application model has to be 
created. An application model program frame looks like the 
following example.  

do communication or initialization  
comp = new Computer( Workload model );  
while ( Loop ) { 
 runtime = GetRandomRuntime();  
 comp->RunProcess( runtime ); 
 loadavg = comp->LoadAverage(n); 
 do communication or load bal ancing 
} 
collect results  

The Unix Load Average 
One important application of CLUE is the development 

and assessment of dynamic load balancing strategies. Such 
strategies observe the run-time behavior of parallel pro-
grams and identify overloaded and underloaded processors. 
A processor overload may occur, (i) if one processor has 
been assigned more work than others (this can be the case 
if the amount of work necessary to compute the result is not 
known in advance), or (ii) if workstation users interactively 
start competing processes on one or more workstations.  

The load balancing strategy thus must react to load 
changes and may decide to transmit work from one proces-
sor to another. For measuring case (ii), usually the Unix 
load average is used, i.e., the exponentially smoothed 
length of the processor queue, holding all currently running 

processes. The Unix load average tX̂  is defined to be 



ttt XXX )1(ˆˆ
1 ββ −+=+    (1) 

where tX  is the number of running processes at time t. 

The load average depends on ]1,0[∈β , the exponential 

smoothing constant. It defines, how much of the past 
should be included into the current load estimate. If writing 

)1/( += NNβ , then 1
ˆ

+tX  may also be interpreted as an 

estimate for the arithmetic mean of the last N observations 
1,,1,0, −=− NiX it Κ  [Schlittgen and Streitberg 1995]. By 

setting 984.0
61

60 ≈=β  and calculating tX  every second, 

tX  thus may be interpreted as the arithmetic mean number 

of processes run in the last 60 seconds. Unix traditionally 
calculates such estimates for the last 60 seconds, the last 5 
minutes and the last 15 minutes. WUS allows the computa-
tion of such load averages for any N. 

CASE STUDY: PARALLEL INTEGRATION  

In order to demonstrate the applicability of CLUE and 
to validate the simulation accuracy, several case studies 
have been conducted. 

In the first case study, a global bag of tasks is defined 
to contain 10,000 definite integrals �

=
b

a

dxxfbaf )(],,[I     (2) 

for given integrands f(x) and given interval boundaries a 
and b. This workload is then to be computed in parallel on 
workstations being interconnected by Fast Ethernet. The 
integrals are to be calculated using a globally adaptive 
automatic integration algorithm [Piessens et al. 1983]. This 
algorithm computes an approximation  

],,[I],,[Q bafbaf ≈     (3) 

and an error estimate 
],,[I],,[Q]e[],,[E bafbaff,a,bbaf −=≈  (4) 

such that  
τ≤],,[E baf     (5) 

for a given error tolerance τ . The estimates ],,[Q baf  and 

],,[E baf  are calculated by evaluating f(x) at N points and 

applying a so-called integration formula [Krommer and 
Ueberhuber 1994], being a weighted sum of the integrand 
values. Then, if (5) does not hold, the original interval [a,b] 
is subdivided into two intervals ]2/)(,[ baa +  and 

],2/)[( bba + , and estimates (3) and (4) are again calcu-

lated for both subintervals. If the sum of the two error esti-
mates still does not fulfill (5), the interval with the largest 
error estimate is chosen and further subdivided. This pro-
cedure, resulting in a possibly large number of subintervals 
and therefore integrand evaluations thus depends on the 

input data f, a and b in an unpredictable way and the 
needed CPU time for obtaining (5) is not known a priori. 
This algorithm is difficult to parallelize, as it is intrinsically 
sequential. Also, if a large number of independent calcula-
tions for (2) are to be performed in parallel, a distribution 
of the tasks a priori is difficult, as the CPU requirements of 
each task is unknown and thus some processors might get 
overloaded while others might soon be idle because their 
tasks need only little CPU time. 

For the integrand f(x), three basic integrand classes 
were chosen: �

Oscillating integrands (7 families). �
Integrands with singularities, peaks or discontinuities  
(8 families). �
Mixture families (6 families). 
Each integrand family depends on a parameter 

]1,0[∈α  defining the severity of the integration problem 

(2). The higher α  is, the more integrand evaluations and 
thus CPU time is needed to obtain (5). An example for an 
oscillatory family is given by �

++
π

α α
2

0

1)600sin( dxxxe x .   (6) 

Figure 6 shows the number of integrand evaluations for 
family (6) needed to fulfill the error requirement (5). The 
results are given for different N-point integration formulas. 
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Figure 6. Function evaluations needed for oscillating 
integrands. 

A complete definition of the integrand families as well 
as a mathematical explanation of the curve shapes can be 
found in [Hlavacs 2000].  

Each of the 10,000 tasks is defined by choosing one in-
tegrand family and one particular ]1,0[∈α  at random, de-

scribing the computation of exactly one definite integral. A 
central master manages the bag of tasks. 

The program has first been executed on a network of 
workstations (NOW) consisting of five Sun workstations 



with Sparc and UltraSparc processors and running the Sun 
Solaris operating system. These workstations were con-
nected by a switched Fast Ethernet network yielding 100 
Mbit/s bandwidth. Additionally, the program has been 
simulated with CLUE.  

Figure 7 shows the measured run-times and the simula-
tion results.  It can be seen that in this scenario, the accu-
racy of CLUE is very high. The experiment also shows that 
with more than four workstations, no more speed-up is ob-
served.  
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Figure 7. Measured run time vs. simulated run time (in 
seconds) on the Sun NOW. Task message size is 10 KB. 

The same experiment has been repeated on the Beo-
wulf cluster of SMPs maintained by the Institute for Physi-
cal and Theoretical Chemistry of the Vienna University of 
Technology, described in a later case study. This cluster 
consists of five PCs containing two processors each. Figure 
8 shows the simulation results. Again the simulation result 
yields high accuracy. 
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Figure 8. Measured run time vs. simulated run time (in 
seconds). Task message size is 500 KB.  

CASE STUDY: LOAD INDEX EVALUATION  

In this case study, the WUS load average simulation is 
used to find an optimum β  for predicting the future work-

station workload. One obvious question is, which β  is best 

to predict the future workload of a workstation, and thus 
the time it takes to compute a task under a given workload.  

Sampled Workload 
In order to obtain realistic background workload, trac-

ing programs were started on one particular network of 
workstations being maintained at the Vienna University of 
Technology. The observed workstations contained DEC 
Alpha processors under the OSF/1 operating system. The 
workload was sampled during the period from March 15th, 
1998 to May 13th, 1998. For all visible Unix processes, the 
sampled workload parameters were: �

Time �
Process ID (PID) �
Parent PID �
CPU time consumed so far �
CPU time consumed by all children �
Executable name 
Figure 9 shows a typical workstation workload as has 

been observed on a Monday. It can be seen, how the time of 
day influences the arrival of processes, thus reflecting the 
workload that is generated by interactive users. The work-
load trace files indicate large fluctuations of workload dur-
ing the day. Especially the faster machines are more likely 
to get very high workloads. ���J���������V���!�J���m m¡-�V¢$���D£¤�-¥�¦¨§J�
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Figure 9. Arrival of processes per minute on one par-

ticular workstation day. 

Simulation Scenario 
For evaluating different load averages, the following 

simulation scenario was chosen: The workload of one 
workstation day was provided to WUS, which would use 
this data to create virtual processes. Beginning at time t, a 
process consuming ]60,1[∈s  CPU seconds was then con-



tinuously created. At start time, the load average (1) was 
used to predict the actual run-time of this process under the 
observed load situation. After the process consumed the 
CPU time, the prediction error, i.e., the difference between 
the predicted and the actual run-time was computed. Then, 
another process consuming s CPU seconds was immedi-
ately created.  

Simulation Results 
Figure 10 shows the simulation results. As a measure 

for the prediction quality, the figures show the mean error 
of all predictions for one particular tuple ),( sβ . It can be 

seen that when averaging over the whole day and for proc-
esses consuming only a few CPU seconds, the best predic-
tion is given by 0=β , which according to (1) denotes the 

actual number of running processes. As processes consume 
more CPU seconds, higher values of β  produce better re-

sults.  ½z¾?¿7ÀÂÁ�ÃÄ¾?ÅmÆÇbÈbÆÉ7À�¾�ÃÄÃNÉ7Ã
ÊmË Ê7ÌÊmË Ê�ÍÊmË Ê7ÎÊmË Ê�Ï

ÐÒÑÔÓ¤Õ ¾?Ç�É�ÀmÅ Õ
Î�ÊÏ7ÊÖ Ê×�ÊØ7ÊÙ?ÊÚ

Ê6Û Ì Ê6Û Î ÊmÛ Ö ÊmÛ Ø Ê
 

Figure 10. Simulation results using the workload of 
one particular workstation from 00:00 to 24:00. 

CASE STUDY: SCALAPACK ON PC CLUSTERS 

In this case study it is demonstrated how to use CLUE 
for simulating the performance of standard software run on 
PC clusters. A PC cluster typically consists of N of-the-shelf 
PCs connected with each other over standard Fast Ethernet 
or some gigabit class network, each PC containing one, two 
or four Intel compatible processors working in symmetric 
shared memory (SMP) mode. PC clusters running the 
Linux operating system are often called Beowulf clusters 
and have become popular in the last few years due to the 
fact that they deliver high computing power at a reasonable 
price. Due to the availability of a large number of different 
PC hardware components, it is difficult to decide which 
cluster configuration yields the best performance for a 
given application. Simulating different cluster configura-
tions before deciding to buy one particular may aid this 
decision process. In the carried out experiments, two spe-
cific PC cluster configurations have been investigated.  

The Vienna Cluster. 
The first PC cluster of the research project AURORA 

(http://www.vcpc.univie.ac.at/aurora/) was built for coop-
eration between the Institutes for Applied and Numerical 
Mathematics and Physical and Theoretical Chemistry, both 
part of the Vienna University of Technology. It consists of 
one master and five dual Pentium II slaves using Fast 
Ethernet communication. The master is used as file and net 
server and does all the compilation work. 

Figure 11 shows the send and transmission times ob-
served on the Vienna cluster. Both sender and receiver run 
on the same node, thus the message is not sent over the net-
work. Also, the piecewise linear model used for the simula-
tion is shown as well. These measurements were conducted 
by running specially written timing software, using both 
PVM and ordinary UDP packets for time synchronization.  

Additionally, for the case of sending messages from 
one sender to several receivers at the same time, contention 
has been observed that increases both the send and trans-
mission time.  
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Figure 11. Send and transmission time  for the Vienna 

cluster. Sender and receiver are on the same node. 

The Aachen Cluster 
The PC cluster Siemens hpcLine consists of 16 dual 

processor boards using 400 MHz Pentium II. The nodes 
communicate either via switched Fast Ethernet or SCI 
(Scalable Coherent Interface). The computational factor of 
nodes of the Aachen cluster has been measured to be 0.91 
relative to the Vienna cluster, where simulation runs have 
been carried out. Additionally, the SCI network was only 
available for the MPI version of BLACS. Thus, the commu-
nication parameters and the performance of the real runs 
were collected for the MPI version of BLACS, whereas the 
simulation runs were still carried out on the Vienna cluster 
using the PVM version of the BLACS. Communication 
models for the Aachen cluster SCI network can be found in 
[Hlavacs 2000]. 



Simulated Software 
The standard parallel software chosen for simulation 

consists of subroutines of SCALAPACK [Blackford et al. 
1997], the parallel version of LAPACK [Anderson et al. 
1999], the well-known library for linear algebra. Both 
LAPACK and SCALAPACK are based on calls to the basic 
linear algebra subprograms (BLAS), their parallel version 
being called PBLAS. Both PBLAS and SCALAPACK use the 
basic linear algebra communication subroutines (BLACS) 
for communication, the BLACS itself being based on PVM 
or MPI. 

Three SCALAPACK routines were used to demonstrate 
the usefulness and reliability of CLUE: �

Matrix -Matrix Multiplication.  The routine PBLAS/ 
pdgemm is used to multiply two matrices. �
Cholesky Factorization. The routine SCALAPACK/ 
pdpotrf  is used to compute the Cholesky factoriza-
tion of a symmetric, positive definite matrix. �
LU Factorization.  The routine SCALAPACK/ 
pdgetrf  is used to compute the LU-factorization of a 
general matrix.  
In this case study matrix sizes have been set to 

20002000× . 

Simulation Results 
For the real runs, the PVM version of SCALAPACK and 

PBLAS were used (on the Vienna cluster). Each simulation 
run was carried out on one workstation only. All executa-
bles print out their result in terms of the needed wall clock 
time.  

The simulation runs should answer the following ques-
tions: 
1. Do the real observations and the simulated runs have 

the same qualitative properties? 
2. Do the real observations and the simulated runs have 

the same quantitative properties? 
3. Can the simulation results be used to evaluate the per-

formance of workstations clusters a priori? 
In the following figures, the observed and simulated 

wall clock times are plotted against the processor grid used. 
Such a grid or 2-dimensional mesh is always assumed to 
define the topology of the parallel computer, even if in real-
ity this is a workstation cluster connected over a bus, star or 
ring topology. Each processor is assigned to a certain place 
in the virtual mesh topology. Basically, an MN ×  grid 
means that MN ×  processors were used for the computa-
tion. The relation of N to M defines the communication pat-
tern used, yielding different speed-ups as the below results 
show. As can be seen, simulation results obtained for a PC 
cluster with slow communication (using Fast Ethernet) are 
very accurate. The simulation highly satisfactory has cap-
tured both qualitative and quantitative performance behav-

ior of this Beowulf cluster. Inaccuracies only occur for 
some runs of matrix-matrix multiplication, where the simu-
lation does not reflect contention.  

In contrast to simulating the performance of the PVM 
versions of SCALAPACK and PBLAS by using the same PVM 
code, simulating their MPI versions by using the PVM ver-
sions on a different type of node is far more complicated. 
Still, the qualitative behavior of the parallel programs is ac-
curately simulated, while the quantitative results are some-
times a little misleading.  
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Figure 12. Cholesky factorization run time. 

It may thus be concluded, that performance compari-
sons between different workstation clusters are possible, 
though experiments must be carefully designed and inter-
preted. The qualitative behavior of parallel programs run-
ning on a workstation cluster though can be simulated ac-
curately, independent of the use of PVM or MPI.  

It is thus possible to analyze the behavior of parallel 
programs and predict their performance, depending on 
cluster parameters. Simulation results can be used to inves-
tigate the influence of different parameters of the simulated 
workstation or PC cluster, in order to plan new hardware 
configurations or make an educated choice between several 
alternatives.  

CONCLUSION 

In this work, the simulation and assessment tool CLUE 
has been described. It consists of MISS-PVM, the actual 
simulation layer, and WUS, the Workstation User Simula-
tor. MISS-PVM allows the simulation of parallel programs 
using the PVM library for message passing. The simulation 
may be carried out on one or several computers, whereas 
the properties of the virtually assumed parallel computer 
are defined in a configuration file. The conservative dis-
tributed discrete event simulation protocol guarantees cor-
rect event order. 

By linking MISS-PVM to WUS, real applications or sta-
tistical models can be used to simulate load balancing on 



heterogeneous, interactively used workstation clusters. In 
order to support this task, WUS allows priority scheduling 
and produces load estimates similar to the standard UNIX 
load metrics, thus simulating the effect of concurrently run-
ning processes.  

The applicability and accuracy has been demonstrated 
in three case studies. Simulation runs show good accuracy 
when compared to real runs. 
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