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Abstract

Video games have gained immense traction today, ingraining themselves deeply within
popular culture and captivating a global audience. These interactive digital experiences
have become an integral part of the fabric of modern society. Notably, the financial success
of top-tier video game products now surpasses even the most lucrative film productions,
underscoring the industry’s exceptional commercial prowess and dominant market position.
With the rising complexity of video games, we also find a rising complexity of tools required
to develop high-fidelity graphics or believable and challenging Non-Player-Characters.
Specifically, Behavior Trees have emerged as popular tools to model the tasks of such
a Non-Player-Character as a network of hierarchical nodes. Addressing the issues of
combinatorial explosion, which were a common problem in complex behaviors modeled as
state machines, Behavior Trees solve this issue. However, hand-making Behavior Trees can
still be difficult, complex, and error-prone. Thus, the rising popularity of Behavior Trees
also brought widespread interest in ways to generate them automatically. Fully automatic
creation is commonly solved using Evolutionary Algorithms, while machine-learning-
backed approaches typically focus on improving existing Behavior Trees. In this thesis,
we propose a novel solution to generate Behavior Trees automatically and autonomously
from reinforcement learned autonomous agents. We developed a Capture The Flag-style
game in which two teams compete to win. The Behavior Trees are generated from the
knowledge of agents competing in this game by extracting this knowledge and parsing
it into a Behavior Tree format. The proposed algorithm can generate these trees with
comparable performance to the autonomous agents. Additionally, the generated trees are
shown to be versatile, adapting to constraints not considered while they were created.

Keywords

Behavior Tree, Reinforcement Learning, Automatic Creation, Video Game, Non-Player-
Character
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Kurzfassung

Videospiele haben heute immense Popularitit erlangt und sind ein fester Bestandteil un-
serer Kultur und sind zu einem integralen Bestandteil der modernen Gesellschaft geworden.
Bemerkenswerterweise iibertrifft der finanzielle Erfolg fithrender Videospielprodukte mit-
tlerweile sogar die Einnahmen der teuersten Filme, was die aufsergewohnliche kommerzielle
Starke und dominante Marktposition dieser blithenden Branche unterstreicht. Mit der
wachsenden Komplexitit von Videospielen geht auch eine zunehmende Komplexitat der
zur Entwicklung hochwertiger Grafiken und glaubwiirdiger sowie herausfordernder Nicht-
Spieler-Charaktere erforderlichen Werkzeuge einher. Hierbei haben sich insbesondere als
beliebte Modelle zur Abbildung der Aufgaben solcher Nicht-Spieler-Charaktere Behavior
Trees etabliert. Sie l6sen das Problem der kombinatorischen Explosion, das bei der Model-
lierung komplexer Verhaltensweisen als Zustandsmaschinen héufig auftritt. Das handische
Anfertigen von Behavior Trees kann jedoch nach wie vor schwierig, komplex und fehleran-
fallig sein. Daher ist mit deren steigender Beliebtheit auch ein weitreichendes Interesse an
der Methoden entstanden zur automatischen Generierung entstanden. Die vollstandige
und automatische Erzeugung wird tiblicherweise durch evolutionére Algorithmen realisiert,
wahrend Ansétze auf Basis maschinellen Lernens sich in der Regel darauf konzentrieren,
bestehende Behavior Trees zu verbessern. In dieser Arbeit wird ein neuartiger Ansatz
vorgeschlagen, der eine vollstindig automatische und autonome Generierung Behavior
Trees aus autonomen, durch maschinellen Lernens erworbenem Wissen ermoglicht. Hier-
fiir wurde ein "Capture the Flag"-Spiel entwickelt, bei dem zwei Teams um den Sieg
konkurrieren. Die Behavior Trees werden durch Extraktion und Analyse des Wissens der
Agenten generiert, die in diesem Spiel antreten. Der vorgestellte Algorithmus ermdglicht
die Generierung von Behavior Trees die zu den autonomen Agenten vergleichbar leis-
tungsfihig handeln. Dariiber hinaus zeigen wir, dass die generierten Behavior Trees sich
an Einschrankungen anpassen kénnen, die wahrend ihrer Erstellung nicht berticksichtigt
wurden.
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1. Introduction

The field of |Artificial Intelligence in video games has come a long way since its
early days of simple rule-based systems and scripted behaviors for Non-Player Characters
(NPCs). As video games’ complexity has grown in areas such as real-time rendering,
physics systems, and networking, there is a corresponding need for advancements in Al
systems that control [Non-Player Character] (NPC) behaviors. However, creating intricate,
intelligent behaviors with rudimentary tools not explicitly designed for this task can be
laborious, error-prone, and challenging. Therefore, game developers have been exploring
tools like Behavior Trees (BTs), Finite State Machines (FSMs), and Goal-Oriented Action
Planning (GOAP).

One of the early public appearances of BTk addresses the issue of combinatorial ex-
plosion in [FSME, a popular design method to create simple behaviors. This phenomenon
refers to the exponential increase in complexity that occurs with each added state in a state
machine, leading to a decrease in maintainability and readability. [BTk were developed to
respond to this challenge. They offer a hierarchical and structured way to organize and
prioritize behaviors in autonomous agents (self-governing entities), facilitating complex
decision-making in response to varying conditions. Today, BTs are extensively used
in video games and robotics for designing a range of behaviors, from simple tasks like
movement and combat to intricate social interactions. This has made them a subject of
wide-ranging research in academic and industrial fields.

Over time, the execution model of BTs, their internal mechanics, and layout details
have undergone many refinements. This includes the addition of more intricate and
specialized nodes to facilitate the creation of complex sub-trees using simplified structures
and adapting traversal methods to meet the runtime demands of video games and indus-
trial robots. Despite these advancements, the core principles and values that have made
BTs a highly-regarded tool have remained intact and continue to define all improvements
and adaptations.

1.1. Motivation

A popular and well-researched topic is improving behavior trees through restructuring,
automatically generating them using autonomous means, or validating the safety and
correctness of a behavior tree. The motivation behind automatic generation is often
linked to applying the [BT] For instance, in safety-related contexts like autonomous
driving or crewless aerial vehicles, an autonomous agent driven by a behavior tree must
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comply with specific safety protocols and guidelines. In contrast, in entertainment, more
emphasis is placed on displaying complex and believable behaviors, sometimes resulting in
intricate tree structures. Authoring these trees manually is often tedious and challenging,
necessitating at least basic technical knowledge.

Past research has usually focused on generation methods that require an existing behavior
tree to improve upon, either by manually building one or randomly generating one that is
then enhanced using genetic algorithms, a way of optimization that mimics the process of
natural selection. Our study deviates from this trend, instead investigating a method that
allows the complete synthesis of a behavior tree without needing a pre-existing handmade
or artificial input tree.

The algorithm proposed in this thesis aims to synthesize an NPC behavior tree in
a video game context. This means that the accuracy and performance of the behavior
shown aren’t necessarily the most critical factors. The experiment utilizes a simple
“capture-the-flag” scenario, a standard game mode in which two teams compete. Our
system was developed with traditional video game elements in mind. Using reinforcement
learning, a type of machine learning where an agent learns to make decisions by trial and
error, the agents acting as players are trained to play and win the game. The knowledge
obtained during this training phase is then used to synthesize a behavior tree.

We then test the validity and performance of these automatically created trees in the same
game environment they were trained in. While generating behavior trees is a prevalent
and thriving research topic, complete synthesis using reinforcement learning is a novel
concept, as very few studies have explored this method.

1.2. Research Questions

The proposed method for the autonomous creation of behavior trees aims to reduce
the complexity of developing behaviors for Non-Player-Characters by leveraging tabular
reinforcement learning methods, such that these behavior trees can be used in game-like
environments, outperforming handmade behaviors and policies. Furthermore, since using
several different behavior trees in a video game for several characters of the same type
is often required, we explore the effectiveness of using the proposed approach with a
multi-agent reinforcement learning approach.

Finally, we explore which conditions need to be placed on the reinforcement learn-
ing algorithm to create a behavior tree successfully.
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These goals are evaluated by answering the following research questions:

¢ RQ1: Can the proposed algorithm automatically create Behavior Trees that out-
perform manually created behaviors and policies?

e RQ2: Can the Behavior Trees generated by the proposed algorithm adapt to and
perform well in unexpected scenarios not explicitly planned for during the creation
phase?

¢ RQ3: How do parameter adjustments during the reinforcement learning phase
affect the performance of the created Behavior Trees?

¢ RQ4: Can the proposed algorithm successfully generate Behavior Trees that
facilitate cooperative behavior in a multi-agent setting?

1.3. Synopsis

This thesis is structured as follows:

Chapter 1 provides an overview of the problem addressed in this thesis and discusses our
motivations for pursuing this research.

Chapter 2 offers an in-depth understanding of behavior trees, including their technical
concepts, history, and design philosophies. This chapter also comprehensively introduces
the reinforcement learning method used in our implementation.

Chapter 3 examines previous work on the automatic creation of behavior trees in industry
and research contexts. This includes exploring how this topic is approached in the enter-
tainment industry and robotics.

Chapter 4 presents our proposed algorithm for autonomous and automatic behavior
tree creation. Further, we examine the architecture of the libraries we developed for our
study.

Chapter 5 discusses the experimental setups and evaluation methods used in our experi-
ments.

In Chapter 6, we delve into the results of our experiments and offer a thorough analysis
of our findings.

Finally, Chapter 7 concludes our work. Here, we reflect on our results, discuss the
limitations of our research, and suggest potential avenues for future exploration.






2. Related Work

This chapter describes previous approaches in the literature about the autonomous
creation of BTs from various techniques to synthesize one entirely or improve upon an
existing one. The analysis in this chapter is not limited to the autonomous creation of
BTs in the video game industry.

2.1. Brief History

While the |[Behaviour Tree| emerged as a tool developed by video game developers [1§]
to simplify [Non-Player Character] development by providing a replacement for
the widely used [Finite State Machine| (FSM]), the first steps toward BTs were made even
earlier by Mateas and Stern [26] who created a language to express characters’ behaviors
in video games. Unfortunately, tracking the exact origins and historical evolution of
BTk difficult due to the nature of the video game industry. Conferences in this domain
rarely publish peer-reviewed or academic work. This is also noted by lovono et al. in
their extensive survey paper about behavior trees [16]. The development and evolution of
behavior trees are sparsely documented, and popular literature mentions motivations for
their advancements only as side notes [36], making it difficult to establish an accurate
timeline.

Earliest journal papers, such as the work in [I3] and [12], were released several years
after their initial proposal. The expressiveness of BTk was later discovered by scientists
in the field of robotics. The tool was quickly adapted to new use cases such as combat
simulations [3] or home applications [4], as well as industrial- and social robots [10],
and vehicles [3I]. Behavior trees have thus been a popular research topic, adding an
event-based execution method [I], adding utility theory [28], improving asynchronous
execution [6] or using them as the basis for knowledge transfer in multi-robot-systems [45].
The work of [19] proposes the addition of a unique node to incorporate emotion into the
decision-making process of a behavior tree.

Initial methods for automatic creation were attempted by Lim et al. in [23], which has
sparked broad interest in the subtopic of automatic creation.

2.2. Creation Methods

This section provides an overview of previous research on the automatic creation of [BTE,
divided by the creation method. While offering a great degree of modularity and thus
maintainability, extensive [BTk suffer from increasing complexity. Ensuring a behavior
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tree acts well under certain constraints is often necessary for safety-related contexts. At
the same time, in the video game industry, it is often essential to author a large variety of
BTk for a wide variety of [NPCp. Their modularity makes them thus popular for several
approaches for both fully automatic synthesis and hybrid methods, where hand-made
behavior trees are enhanced or otherwise changed.

2.2.1. Evolutionary Algorithms

As previously mentioned, the earliest works for automatically creating behavior trees in
video games featured improving an Al agent in a commercial game [23]. The automat-
ically created tree was able to outperform the original hand-coded AI. Improving the
performance of an Al agent was further explored using the Mario AI Benchmark in a
competition in which teams submit autonomous agents to play on a previously unseen
level of the popular side-scrolling platform game Mario. ThdBT| was composed of actions
Mario can perform. Conditions of the tree were mapped to matrices surrounding Mario,
populated with information about the character’s environment. The team expressed the
Behaviour Tree using grammar rules and used Genetic Programming (GP) to improve
its performance. The placement and overall performance strengthen the idea that BTs
can be significantly enhanced using automatic approaches [35]. The same benchmark was
used to further the development and research on automated creation using similar [GP]
approaches [8], 30]

The work of [40] has contributed explicitly to video game development by reducing
the manual labor required to design artificial intelligence agents. Genetic Algorithms, in
conjunction with BTs, have also been used to test the viability of difficulty management in
video games by generating a diverse range of behaviors [32]. Additional efforts include the
automatic generation of Al opponents that proved capable of defeating human opponents
but had difficulty beating traditional AI bots [15].

<BT> = <BT> <Node> | <Node>
<Node> = <Condition> | <Action>
<Condition> ::= if (obstacleAhead) then <Action>;
| if (enemyAhead) then <Action>;
<Action> ::= moveLeft; | moveRight; | jump; | shoot;

Figure 2.1.: Grammatical expression of a behavior tree, as seen in [35]

In [39], Scheper, et al. used an |[Evolutionary Algorithm| (EAJ) approach to evolving
a[BT]in a simulated environment. The resulting [BT] was transferred to a real-world
hardware platform. The evolved BT]slightly outperformed the manually designed behavior,
suggesting that moving the knowledge gained in simulations to the real world and that a
generated tree proves to be a valid alternative over human-generated behaviors is possible.
Other applications suggest improving BTs with GP is a viable approach in environments
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where a high degree of fault tolerance is required [I7]. When applied to behaviors of
swarm robotics, it was found that Behaviour Trees provide an attractive alternative
to traditional approaches but do not necessarily produce better results than [22],
despite proving themselves viable in other swarm-like applications [20] 21].

2.2.2. Reinforcement Learning

The idea of improving or authoring behavior trees by [Reinforcement Learning]
methods is novel. The earliest works include that of Dey and Child in [IT], in which an
existing behavior tree was improved by reordering nodes to achieve better behavior for
the autonomous agents. In [34], the concept of learning nodes was researched. These
nodes use [RL] methods to reorder sub-nodes within composites and allow action nodes to
choose different actions based on the learned knowledge.

Similarly, the concept of a LearningSelector node that uses a [RL] algorithm to reorder
nodes of a selector based on states and rewards was also researched in[I4]. Exploring
the combination of [RT] and [BTk in safety-related contexts has shown that under certain
design constraints, machine learning approaches can be used in these domains as well [42].

One of the more recent and most important contributions to this thesis is the work
of Banerjee [2] in which a novel algorithm was presented, allowing the autonomous ac-
quisition of a [BT] by using experiences gained from a reinforcement learning model. The
work was later verified and extended in [25]. While previous approaches have only used
[Reinforcement Learning| algorithms to enhance or improve existing trees, the algorithms
presented in these works leverage reinforcement learning for behavior tree creation.

2.2.3. Others

Colledanchise et al. propose a method in [5] utilizing Linear Temporal Logic to construct
BTk in polynomial time that correctly executes their assigned tasks.

Learning from demonstration refers to a technique in which a human actor takes the role
of the autonomous agent and performs its tasks. The actions the human actor takes
are then used to generate a [BT] This approach removes the necessity to introduce Al
designers to complex tools to model behaviors and does not require a behavior tree as
input. [37, 38]

Case-based reasoning (CBR) is a method to find solutions to new problems by eval-
uating previous experiences. This technique was successfully applied to expand behavior
trees dynamically [13] and later to dynamically query behaviors to assemble a complex
behavior tree from a set of simple behaviors [12].

2.3. Applications

The modularity and expressiveness of behavior trees make them a popular tool for design-
ing and modeling artificial behaviors in various scenarios. In the domain of video games,
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they are used in multiple genres and applications such as navigation of platformers |30} 35],
control of agents in marine-based-games [27], and automatic difficulty management in
real-time-strategy games [15].

In addition, the strengths of have also been leveraged in home applications [4],
swarm robotics [33, 45] and autonomous driving [44]. Furthermore, in [46], automatic
creation for unpredictable environments was successfully achieved.

2.4. Limitations

During our research, we discovered that most approaches for behavior tree synthesis rely
on either an input tree or genetic algorithms to artificially create random input trees
as initial population and use [Genetic Programming] to improve these populations.
Other approaches require an existing tree to generate an improved version. Overall, only
a little work conducted in complete from-scratch synthesis attempts to create a working
and performant behavior tree without previous input or intermediate steps.

An exhaustive review of Behaviour Trees in robotics and |Artificial Intelligence
in [I6] revealed that the current research shows a slight overlap between learning ap-
proaches and the video game Al domain. As explained earlier, this is likely due to
the nature of the entertainment industry, in which innovations are often seen as trade
secrets and are only shown at industry-centered conferences. However, video games and
game-like simulations are often used as testing environments for automated creation
technologies before they are applied in real-world scenarios. Of 31 papers reviewed in the
video game domain and 37 focused on BT synthesis, only nine articles appeared in both
categories [16]. Despite this, remain a popular tool in the video games industry, and
research regarding improving frameworks continues to drive forward [41].




3. Background

This chapter covers the background for the tools developed in this thesis. We first
cover behavior trees, their definition, design philosophy, and mathematical formulation.
Then we discuss the fundamentals of [Reinforcement Learning| and the Q-Learning
algorithm. This tabular reinforcement learning approach enables autonomous agents to
learn optimal policies to achieve a given task. These methods, in conjunction, provide
the basis of the proposed algorithm to facilitate the automatic creation of [Behaviour Tree

(BT)s.

3.1. Behavior Tree

A |Behaviour Tree] is a decision-making and actuation architecture for controlling
autonomous agents, such as autonomous robots or [Non-Player Character| (NPC)) in video
games. A [BT]defines the behavior of an autonomous agent by hierarchically modeling
the actions it can perform and the perceptions about the agent’s environment.

Behavior trees emerged as a tool to replace the widely used [FSM]in video games. For
complex behaviors involving numerous tasks and transitions, [FSMk can suffer from a
combinatorial explosion. This rapid increase in complexity leads to an exponential growth
in the number of states and transitions, making them increasingly difficult to manage
and understand [9, p. 24|. Furthermore, the larger the the more computational
resources it consumes, which can be a significant concern in time-sensitive applications
like video games or robotics. By offering a more structured and manageable approach,
BTs address this issue, making them a valuable tool for designing and implementing
sophisticated behaviors in autonomous agents.

3.1.1. Definition and Structure

[BTk model behaviors as a hierarchical network of tasks arranged as a rooted directed
acyclic graph (DAG). Internal nodes are used for control flow and decision making while
leaf nodes represent executable tasksﬂ or conditions. A common approach is to let nodes
in the tree implement an interface that defines the node’s specific behavior. This means a
node must implement some function that enables the behavior and returns the status of
the task upon completion, indicating the success or failure of the behavior. In our work,
the interface to be implemented is an update()-function.

!Comparable to states in a Finite State Machine
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Status indicators are often implementation-defined and tailored to the needs of the
specific domain. However, three commonly found status indicators are:

1. Success - The node has finished its task successfully.
2. Running - The node has not yet finished its task.

3. Fuailure - The node could not complete its task.

A base set of internal and external nodes have been defined in various previous works

such as [29, p. 334-351] and [36], 24]. These nodes provide the fundamental architecture
for BT construction:

1. Action Nodes (or Task Nodes) are leaf nodes executing some behavior. Their

update functionality is typically used for the actuation of the agent, such as moving
toward a point or picking up an object. Returns Success or Failure upon task
completion and Running otherwise.

. Composites are a type of container node. These nodes are non-leaf nodes and hold

1 to N child nodes. Composite nodes are further defined by their internal execution
policy and typically return the status of one or all child nodes.

. Conditions are a restricted type of Action Node used for querying data and

providing decision-making information to their parent node. These nodes are also
referred to as Guards as they are commonly used before action nodes to preemptively
ensure the actuation nodes’ behavior can be executed successfully. These nodes
typically only return Success or Failure.

. Decorators is a composite node that holds one child node and defines a pre-

condition or execution policy of its child node. A common example is the repeater
nodd? and the inverter noddl

Composite nodes are the most commonly used type of internal node and define the

order of tasks and actions ranked by importance in a left-to-right fashion. The three most
common subtypes of Composite Nodes are Selectors, Sequences, and Fallbacks. Other
extensions exist but are commonly seen in domain-specific use cases.

1. Selectors (also called Fallback nodes) attempt to find the first successful child

node by executing the tasks of its children in sequence until a child node returns a
Success state, upon which the Selector node returns a Success state. If all children
of the Selector node fail to execute their task, the selector node will return a Failure
state. Selector nodes in this thesis are notated as ?

. Sequences can only be successful if all its child nodes succeed. The selector node

returns a Success state if all of its child nodes completed their task successfully,
and it returns a Failure state immediately when a child node is unsuccessful. The
Selector node is notated in this thesis using an arrow: —

2A repeater ticks its child node more than once before returning the node status to its parent.
3nverters invert the status of a node, such that success will become a failure and vice versa.
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3.1. Behavior Tree

3. Parallel nodes execute all child tasks simultaneously. A success policy of the
parallel node defines how many child tasks are needed at least or most to succeed
or fail for the parallel node to return success or failure to its parent. Most literature
uses the = symbol to indicate parallel nodesEl

Figure [3.1] presents a class diagram outlining a possible implementation of Task,
Composite, and Action nodes in C++. User-defined nodes are separated into a package
different from the core implementation. These nodes implement the base class’s virtual
interface and define the node’s behavior by overriding the update function.

User defined classes)\

N © AttackPlayer

o virtual update(ExecutionContext*) override : NodeStatus

Library\

Y
- - @ Task
ExecutionContext is an empty B\’\

abstract class for passing data

o tick(ExecutionContext*) : NodeStatus
o virtual update(ExecutionContext*) = 0 : NodeStatus

0

NodeStatus
ICEID @ Composite
e
Running o vector<shared_ptr<Task>> m_children
?;;:ucreess o virtual update(ExecutionContext*) = 0 : NodeStatus
N n
Phe \

- \
- \

\
© Sequence © Selector

o update(ExecutionContext*) override : NodeStatus o update(ExecutionContext*) override : NodeStatus

Figure 3.1.: Class diagram of internal and external nodes

The parameter passed to the function provides an interface with the autonomous agent
and facilitates access to relevant application-wide data. This is useful when implementing
task nodes that direct agent movement in scenarios that require framerate-independent
movement speed calculations.

Notably, this implementation approach renders nodes stateless, enabling the reuse of
behavior tree instances across multiple agents and contributing to efficiency and flexibility.

4The exact policy is implementation-defined. It should also be noted that “parallel” in the context of
this node does not necessarily imply the asynchronous execution of its child tasks.
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3. Background

for ¢ from 1 to N do
childStatus < Tick(child(i));
if childStatus is running then
return running;
else if childStatus is success then
‘ return success;
return failure;
Algorithm 1: Pseudocode of a selector node with N child nodes

for ¢ from 1 to N do
childStatus < Tick(child(i));
if childStatus is running then
return running;
else if childStatus is failure then
‘ return failure;
return success;
Algorithm 2: Pseudocode of a sequence node with N child nodes

3.1.2. Execution

The standard execution model of a behavior tree follows a well-defined process character-
ized by the propagation of discrete updates called tick signal from the tree’s roots to its
leaves in a depth-first traversal. The term “tick”, is conventional in the field, deriving from
real-time systems and game loops where actions are updated every “tick”, of the game
clock. In the context of BTs, each node’s internal behavior or logic is encapsulated in this
“tick” function. The tick signal initiates the execution of each node’s associated behavior.

When a node is “ticked”, it executes its associated behavior, returning the result to
its parent node in the tree’s hierarchical structure. This result-propagation forms a
recursive chain, ensuring the systematic execution of behaviors throughout the tree.

Composite nodes, or control structures, maintain the overall execution flow. When
a composite node is ticked, it disseminates the tick signal to its child nodes. This down-
ward propagation guarantees that child nodes are sequentially visited and executed based
on the traversal order dictated by the BTs structure.

Once the tick signal returns to the root node, it marks the completion of the cur-
rent task step, signaling the successful execution of the associated behavior. The root
node must be ticked again to move to the subsequent behavior phase. The frequency at
which the root node is ticked determines the decision-making and behavior execution rate
of the autonomous agent.

12
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?
— 0 Search for
/\ /\ Player
Low Heal Player in Attack
Health? Sight? Player

Figure 3.2.: Simple BT showing one selector-, two sequence-, two condition- and three
action nodes

Figure [3.2] provides an illustrative example of a simple BT, modeling a[NPCk patrolling
behavior in a video game. The behavior tree’s structure prioritizes the defensive “Heal”
task over the offensive “Attack Player” task when the NPC’s health is low, even if the
player is within sight.

3.1.3. Mathematical Definition
A thorough formal mathematical definition of BTs was described by Colledanchise et al.
in [7]. First, a Behavior Tree can be defined as a tuple:

T ={fi,ri, At} (3.1)

where i € N represents the tree’s index, f; : R — R™ a node’s behavior or functionality,
r; is a node’s return status and At is the time step. The execution model can be defined
as:

Tryt(ter1) = fi(ze(te)) (3.2)
tpt1 =1k + At (3.3)

under the stipulation that the execution is done using discrete time steps. Furthermore
this formulation, a Behavior Tree is composed of three regions: A Running-, Success- and
Failure-Region, which is defined as:

R, ={z:r;(x) = R} (3.4)
S; ={x :ri(x) = S} (3.5)
Fi={x:ri(z)=F} (3.6)
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Finally, nodes such as Conditions can be then defined as 7, R; = (), and action nodes are
nodes that satisfy Equation without calling any subtrees. Using this definition, N
behavior trees can be composed into a new behavior tree using a composite operator,
such as the sequence or selector operators:

To = selector(Ti, T2, ..., TN) (3.7)

This formal and functional description of Behavior Trees enables verification of behavior
tree constructs. This is typically useful in environments with low fault tolerance and little
margin for error, such as autonomous driving or uncrewed aerial vehicle operations.

3.1.4. Extensions

Since their introduction, BTs have undergone substantial refinements to increase their
efficiency and versatility. Key among these improvements is the evolution from a tick
propagation execution model to an event-driven model. The traditional method of
updating Behavior Trees involves consistently propagating a tick, which could lead to
performance degradation, particularly when long-running tasks or complex structures
are involved. Modern implementations, however, have adopted an event-driven approach,
leveraging schedulers for these long tasks and initiating full tree traversals only when
necessary. This optimizes performance and allows for more precise control over behavior
execution. The implementation of BTs in the Unreal Engine provides a noteworthy
illustration of this approachﬂ

In addition to these structural improvements, specialized nodes, particularly composite
nodes, have been introduced to enhance the functionality of Behavior Trees further. For
instance, Memory Nodes, which store the number of child functions called during an
iteration, allow for a more streamlined continuation of tasks, reducing the tree traversals
required to locate the previously executing behavior. Yet, this added efficiency necessitates
additional measures to verify that previously checked condition nodes remain valid - an
objective achieved through an event-driven approach. Other novel additions to the model
include nodes specifically designed for event monitoring [I], leading to more responsive
behaviors.

Furthermore, enhancements such as Random- and Stochastic Composite Nodes have
been developed to add complexity to child node visitation. Random Composite Nodes
introduce unpredictability by implementing a non-deterministic order of child traversal,
adding a more diverse range of potential behaviors. In contrast, Stochastic Composite
Nodes adapt over time by recording the success rate of each child node and adjusting
their order accordingly, prioritizing successful behaviors.

Shttps://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/ArtificialIntelligenc
e/BehaviorTrees/BehaviorTreesOverview/ Last accessed: 18.06.2023
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3.2. Reinforcement Learning

These advancements in the design of Behavior Trees enhance their functionality and allow
for more dynamic and responsive behaviors, with applications extending across various
domains.

3.2. Reinforcement Learning

[Reinforcement Learning] is a type of machine learning and a subset of that
is particularly suited for problems that can be modeled as a Markov Decision Process
(MDP), often formulated as a tuple (S, A, P, R). In this tuple, S represents the set of
states an autonomous agent can observe, A represents the set of all possible actions that
the agent can take, and R represents the rewards, which quantify the desirability of
transitioning from one state to another when the agent performs a specific action. The
transition probability P denotes the likelihood of transitioning to another state, given
the current state and action.

3.2.1. Overview

Q-Learning is a value iteration method and a type of tabular [RT] which allows an autonom-
ous agent to determine an optimal strategy or policy to achieve its goal in a dynamic
environment. It is classified as a type of model-free learning, as it does not require a
specific environment model.

The agent determines an optimal policy by maximizing cumulative rewards over time. In
Q-Learning, a table, known as a Q-Table, is maintained, which stores Q-values for each
state-action pair of the agent. These Q-values represent the expected total reward for
taking action a in a particular state s and following a particular policy.

Initially, all Q-values are set to some constant value. During the learning process,
an agent explores the environment by taking actions and receiving feedback through
reward values. As the agent receives feedback, the Q-values in the Q-table are updated
using the Bellman equation, as shown in Equation [3.8] This equation combines the
immediate reward with the discounted future rewards of the next state. [43 p. 131 — 132]

Qnew(st') CLt) — | 1- N X Q(Sta a’t) +ax T’(St, a’t) + \1/ X ma'XQ(St+17 at)
. — —

Learning Reward Discount Optimal

Rate Value Rate Q-Value

(3.8)
Through an iterative process of exploration and exploitation, the agent gradually refines
the Q-values in the Q-table, intending to converge to the optimal values that maximize
the cumulative reward. This process is often guided by an exploration strategy such as
an e-greedy policy. As the agent accumulates more experience, it becomes increasingly
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3. Background

efficient at selecting actions that lead to higher rewards, ultimately learning an optimal
policy for decision-making.

Training of autonomous agents happens over multiple episodes, which can occur on-
line, where the agent actively interacts with a real environment, or offline, during which
Q-values are updated using a fixed dataset of experiences, known as a replay buffer or
experience replay. The replay buffer helps to break the correlation between experiences
and stabilize the learning process by randomly sampling experiences for learning instead
of learning from consecutive experiences. Figure [3.3]illustrates the interaction between
an agent and its environment during the training process.

Takes Action\v

Environment

A\New State%

Reward

Figure 3.3.: Action-Reward feedback loop during training

3.2.2. Parameters

The Bellman Equation, used to update Q-values, relies on several components: the
reward function, current Q-value, and maximum future Q-value, as well as two paramet-
ers—learning rate and discount factor—that influence the agent’s learning process.

The learning rate a controls the influence of newly acquired information and overrides
existing Q-values during the Q-value update process. It determines the balance between
exploiting prior knowledge and incorporating new experiences. A higher learning rate
allows the agent to quickly adapt to new information, while a lower learning rate results
in a more conservative learning process.

The discount rate vy determines the relative importance of future rewards compared
to immediate rewards. The agent can balance decision-making between short-term gains
and long-term benefits by discounting future rewards. A discount rate of 0 indicates that
the agent is myopic and only considers immediate rewards, while a value of 1 implies
equal importance is given to immediate and future rewards.

A policy in Q-Learning guides the agent’s action selection strategy during the learn-
ing process. A greedy policy always picks the action associated with the highest Q-value
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for a given state. This strategy, while efficient, might limit the agent’s exploration of the
environment, potentially causing it to miss more suitable actions in certain states.

An e-greedy policy is often employed to address this exploration-exploitation trade-
off. This policy alternates between exploiting known high-value actions and exploring
lesser-known actions. With a probability determined by the parameter €, the agent
occasionally selects a random action instead of the one with the maximum Q-value. This
mechanism allows the agent to explore alternative paths, learn more about the envir-
onment, and potentially discover better policies or avoid suboptimal results. Balancing
exploration and exploitation is crucial for the learning stability and efficiency of the agent.
Algorithm [3]| details the training loop using an e-greedy policy.

state < initial State();
while state not terminal do
actions = QT able.Get All Actions(state);
if RandomV alue() < € then
‘ action  actions.get RandomAction();
else
‘ action < actions.get Best Action();
end
reward, nextState = agent.doAction(action);
QTable.updateV alue(state, action, nextState, reward);
state < nextState;
end
Algorithm 3: Algorithm detailing the training loop using an e-greedy policy

3.2.3. Limitations

Despite its effectiveness and simplicity, Q-Learning has limitations, making it challenging
to apply to certain problems. One such limitation is its suitability to discrete state spaces,
while many real-world scenarios involve continuous state spaces. Utilizing Q-Learning in
these environments often requires discretization or approximation techniques, introducing
issues such as information loss and the “curse of dimensionality” [11], which refers to the
exponential increase of the observed state-space, with each additional state or space of
the agent. The state space size also influences both performance and the applicability
of tabular methods. An overly large state space can lead to increased runtimes and
ineffective training outcomes, as the agent may never visit some states, making it difficult
to determine the optimal action in these situations [29]. Chapter 5 details our approach
to reducing the state-action space to ensure the Reinforcement Learning phase of our
pipeline, described in the next chapter, is manageable in terms of both execution time
and memory requirements.
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Another limitation stems from the delicate balance between exploration and exploit-
ation in Q-Learning. Too little exploration can lead to suboptimal policies, while excessive
exploration can prolong learning times and negatively impact performance. Standard
methods to address this trade-off include epsilon-greedy policies, where the rate of explor-
ation decreases over time, or more advanced strategies, such as the Upper Confidence
Bound (UCB), which considers both the estimated value and uncertainty of each action.
Despite these strategies, achieving the ideal balance between exploration and exploitation
remains challenging in Q-Learning.

Lastly, the performance of Q-Learning is often sensitive to the choice of several hyperpara-
meters, such as the learning rate, discount rate, and parameters related to exploration.
These hyperparameters must be carefully tuned to achieve optimal performance, and
finding the correct values can often require a combination of manual experimentation and
optimization techniques, adding to the complexity of implementing Q-Learning solutions.
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In this chapter, we delineate the methodology employed in our research, detailing the
architecture and underlying principles of the components we developed for autonomous
agent control and the novel algorithm we propose for automatic behavior tree generation.
We also set forth our study’s primary objectives and the assumptions underlying our
approach. Please note that details regarding the training environment for the agents,
which forms an integral part of our experimental setup, are covered in Chapter 5.

4.1. Design and Implementation

We first look at the design and implementation of the libraries developed for our research.
Primarily, our application is built upon two significant components: a behavior tree
implementation and an implementation of the tabular model-free reinforcement learning
method, Q-Learning. These components were constructed as part of a library developed
in C++ that we use to control our autonomous agents. We also utilize Python scripts
to bridge the gap between these two components. These scripts generate behavior trees
from knowledge acquired through the Q-Learning process and import them for further
evaluation into the simulation detailed in Chapter 5.

4.1.1. Architecture

The architectural design of our application draws from several strategic considerations
for its structure and implementation. The system is composed of two packages: the
BT Library and the QL Library. While both are designed to drive the behavior of
autonomous agents and [NPCk, they do so using different methodologies. The BT Library
leverages behavior trees for decision-making and actuation, and the QL Library employs
Q-Learning to guide agent actions.

We chose C++ as the development language for the BT Library and the QL Library
given its widespread usage in game development and its performance benefits, particularly
in computationally intensive scenarios such as Reinforcement Learning. In contrast,
Python scripts were utilized for connecting these components and generating behavior
trees due to their flexibility in parsing and generating text.

An important architectural decision was the conscious effort to minimize external depend-
encies in our libraries. This choice promotes a lean and streamlined codebase, making
incorporating these libraries into diverse systems easier. Although the BT Library and
the QL Library are standalone entities, they share certain components, enabling seamless
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integration and interaction. These shared features are developed to support our novel
algorithm for generating behavior trees.

Behavior Tree Library

The portion of the library was implemented using the Non-Virtual Interface (NVI)
pattern. This design pattern separates the public interface of a class (non-virtual methods)
from its implementation details (virtual methods). Specifically, it wraps a purely virtual
update() function into a non-virtual tick() function. The primary advantage of this
approach is that it encapsulates the shared functionality like logging in the non-virtual
method, reducing the need for users to manually add these details in their implementation
of the virtual method. Figure depicts the implementation details of the BT library.

BT Library\

© Parser

o json_data : json

© TreeFactory

o build_from_json(string) : BehaviourTree o parse_json(string) : shared_ptr<Task>

];/ )

i

© TaskFactory

o m_taskRegistry : map<string shared_ptr<Task>>

© BehaviorTree

o root : shared_ptr<Task>

o BehaviorTree(shared_ptr<Task>)

o tick(ExecutionContext*) : NodeStatus
' ABY

o register_task<Task>(string)

N

1

@ Task

1
@ NodeStatus
@ ExecutionContext ldle
Running
Success
Failure

o tick(ExecutionContext*) : NodeStatus
o virtual update(ExecutionContext*) = 0 : NodeStatus

0

@ Composite

o m_children : vector<shared_ptr<Task>>

o virtual update(ExecutionContext*) = 0 : NodeStatus

Y N

\

© Sequence

\
© Selector

o update(ExecutionContext*) override : NodeStatus

o update(ExecutionContext*) override : NodeStatus

Figure 4.1.: Class Diagram of the
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The behavior trees are represented using the JSON format. This choice allows the
behavior trees to be configured at runtime, offering increased flexibility in the behavior of
autonomous agents. Moreover, since JSON inherently follows a hierarchical data format,
it maps well to the structure of behavior trees.

The JSON layout follows a specific format where non-leaf nodes contain an array element
called children, and all nodes have a name and type specifier. The name field aids
debugging, while the type specifier reflects the internal class name of the node.

1 {
2 "behaviortree": {
: "name": "root",
| "type": "Selector",
5 "children": [
6 {
7 "name": "Carry crate home",
8 "type": "Sequence",
9 "children": [
10 {
11 "name": "carrying",
12 "type": "carryingCondition"
13 },
14 {
15 "name": "move home",
16 "type": "moveHomeTask"
17 }
18 ]
19 },
20 {
21 "name": "Get a crate",
22 "type": "Sequence",
23 "children": [
24 {
25 "name": "move to crate'",
26 "type": "moveTask"
27 },
28 {
29 "name": "pickup",
30 "type": "pickupTask"
31 }
32 ]
}
! ]
5}
6}

Listing 4.1: Sample BT as Json

The example above provided through a JSON structure demonstrates a simple behavior
of an autonomous agent: carrying crates in its environment to a home position. In the
behavior tree represented by this JSON structure, a selector node will seek the first
successful child, while a sequence node demands success from all its children.
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Consequently, the agent interprets the depicted behavior as: “If I am carrying a crate, 1
will bring it home. Otherwise, I will move to a crate and pick it up”

A visual representation of this BT can be seen in Figure Please note that the
visualization style of the tree in this thesis differs from the one used in the previous
chapter. The new style organizes the tree from left to right, and from top to bottom.
This shift in visual organization does not affect the execution of the behavior tree, as
the execution order depends solely on the tree’s inherent structure and not on its visual
representation. We have adopted this visualization style for the rest of the thesis for its
clear depiction of nodes’ hierarchy and their relationships.

The library provides Selector and Sequence type nodes. Any additional task nodes
must be registered with the NodeFactory before the library can use them. When initiating
a behavior tree, a Treefactory, which includes a JSON parser utilizing an external JSON
parsing libmryH7 is responsible for assembling a behavior tree from an input JSON.

To create a new node, a user inherits either the abstract Task base class for leaf nodes or
the abstract Composite class for non-leaf nodes. An implementing node therefore must:

1. Derive from the public Task-interface and implement the virtual update function.
2. Be registered with the node factory.

The following code example demonstrates how a task can be created, registered, and
loaded into the [BT]library using native C++:

1 struct PickUpTask : public Task

2 {

3 PickUpTask () ;

1 NodeStatus update(Node::ExecutionContext#*) override;
5 };

6

7 void RegisterTasks ()

s {

9 Node::TreeFactory () .register_task<PickUpTask>("pickup");
10 }

11

12 // ... later

14 RegisterTasks () ;

16 BehaviourTree tree{TreeFactory () .build_from_json("myNPC.json")};

Listing 4.2: Registration of Tasks and Instantiation of BT

When the tick() function of the behavior tree is invoked, the signal is propagated from
the root of the BT to its children, each calling their respective tick() function. These
functions, in turn, call the overridden virtual update() function. The tick() and update()

"https://github.com /nlohmann /json
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functions take a single parameter named FEzecutionContext. This parameter provides
the node with the necessary data for execution. This approach encourages stateless task
execution - a beneficial property in behavior trees as it permits the reuse of nodes and trees
across multiple agents. The stateless nature of nodes also aids in reducing memory usage
and enhances scalability when dealing with numerous agents. The Fzxecution Context
is an empty abstract base class that users can use to add additional information. This
information can be a reference to the NPC currently traversing the tree.

’ Simulation ] [ NPC ] ’ BehaviorTree ] [ TreeFactory ] NodeFactory

T
. . . . . .
loop ) Ifor eacﬂ leaf node] : : : :
| Register Leaf Node ! . X >
} ) ) ) ) )
loop /) [for each NPC] ! ! ! !
' Create | ! ! : !
| i | | | |
| ! Create BT from JSON _! ! ! !
| | | | | |
| ' ' Input JSON ! ! :
—_——>
| | | | | |
' ' ! I Input JSON ! !
—_————>
I I I I | |
| | ' ' loop / [for each node] !
| | | | | Request non-leaf node .
| | | | | ]
| | | ! ' New non-leaf node !
I I I I \‘ I
| | | ! ' Request leaf node N
| | | | | I
| | | ' '_ Shared instance of leaf node !
| | | | i i
. ' ! ! ' Add node to tree !
| | | | |
| | | |
: | | | Pointer to root node | |
| | | | |
| | | Pointer to root node | | |
| | | | |
| L Behaviour Tree | | | |
| i ] | | |
|_ NPC Object | | l l l
e —
: : : : ; ;
loop / [until end] ! | ' !
n . L | | |
loop [for each NPC] ! ! ! :
' update() ! ! ! ! !
f——>!
1 ! tick() : : : :
! > ! I |
| L Task result | | | |
| | | |
: | | |

’ Simulation ] [ NPC ] ’ BehaviorTree ] [ TreeFactory ] NodeFactory

Figure 4.2.: Sequence of behavior creation and execution

The following code sample shows an implementation of the Carrying Crate Condition
task depicted in Figure [I.3]
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1 struct Memory : public ExecutionContext

2 {

3 Memory (NPCObject& o) : npcObject (o) {}
| NPCObject& npcObject;

7 struct CarryingCrate : public Task

s {

9 CarryingCrate () : Task("carryingCondition") {}

10 NodeStatus update (ExecutionContext* ctx) override {

11 if (static_cast<Memory*>(ctx).npcObject.isCarrying) {
12 return NodeStatus::SUCCESS;

13 } else {

14 return NodeStatus::FAILURE;

Listing 4.3: Sample Task in C++ native code

Figure [4:2) depicts a sequence diagram visualizing the steps involved in a simulation for
first creating N Non-Player Characters (NPCs) from the JSON of a behavior tree. After
creation, each NPC is updated in succession by invoking the tick() function of the NPC’s
behavior tree.

- move home

- move to crate

Figure 4.3.: The behavior tree shown in Listing 4.1 visualized as tree
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Q-Learning Library

The reinforcement learning portion of the library is responsible for agent decision-making
and actuation, like its [BT| counterpart. Additionally, it provides further functionality to
allow offline and online learning of agent behaviors to improve their performance over
time. It utilizes the Q-Learning approach by creating tuples of agent states and tasks,
leveraging the Tasks stored in the node factory. Figure [£.4] shows the class diagram of the
Q-Learning library, as well as its dependency on the BT library.

Users of the Q-Learning portion of the library can configure the learning- and dis-

count rate, the e-greedy strategy, and a reward table. The reward table is configured

by calling the setReward()-function for each state-action tuple that a reward should be

applied toﬂ To add or subtract a bonus to and from a reward value, the learn()-function

responsible for updating the Q-Table takes an optional bonus value applied once when

the function is called. The following snippet from the Q-Learning library shows the

implementation of the Bellman equation for updating the Q-Table:

1 template <Hashable trait>

2 void q_policy<trait>::learn(trait old_trait_, trait new_trait,

3 std::shared_ptr<Task> task, double bonus)

1

5 ¢ double reward = getReward(old_trait_, task);

6 double Q = getQValue(old_trait_, task);

7 double maxQ = getMaxQValue(new_trait);

8 Q = (1 - alpha) \times Q + alpha \times (reward + bonus + gamma \
times maxQ);

9 storeQValue (old_trait_, task, Q);

Listing 4.4: Q-Learning functionality to update Q-Value
The parameters of the learn()-function are defined as follows
1. The previous state of the agent before taking an action.
2. The new state of the agent after taking an action.
3. The action the agent took.
4. The optional bonus to be applied.

The template parameter trait represents the agent’s state and should be implemented
as a separate state class. The state class representing the agent’s current state must
provide a hashing function to be usable in the Q-Table. For example, during the learning
phase of an agent, at each tick, the agent should fetch the task with the highest Q-value
using the getBestTask()-function, perform the task and call the [earn()-function detailed
above, to update the task’s Q-Value.

2Note that reward refers encompass both positive and negative values, representing the reinforcement or
discouragement of specific actions in the learning process.
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The e-greedy is used when calling the getTask()-function from the library. When re-
questing a task from the Q-Table, the policy dictates that the best suitable task will
be returned, which is the task with the highest Q-Value for a given state. The € value
dictates the chance of selecting a random action from the table. It will also select a
random action from the table if the given state has not been visited yet, making all values
for a given state-action tuple zero.

QL_Library\

@ q_policy

o r_table : map<state map<shared_ptr<Task> double>> BT_Library\
o g_table : map<state map<shared_ptr<Task> double>>
o alpha : double @ TaskFactory
o gamma : double
o epsilon : double o m_taskRegistry : map<string shared_ptr<Task>>

o learn(old_state new_state reward bonus) : void o register_task<Task>(string)
o getTask(state) : shared_ptr<Task>

o getBestTask(state) : shared_ptr<Task>

o getRandomTask() : shared_ptr<Task>

o getQTable() : map<state map<shared_ptr<Task> double>>

&
o
@ State

o Trait : trait

o State(trait)
o hash() : size_t
o get_state() : trait

el ot

R S,
@ trait

o uint32_t hash()

Figure 4.4.: Class Diagram of the Q-Learning library implementation

4.1.2. Behavior Tree Creation Algorithm

We now look at the algorithm we propose that allows us to create a behavior tree from the
experiences gained during the episodes of the Q-Learning method. The creation algorithm
relies on the concept of atomic units in behavior trees [2]. An atomic unit represents a
sequence node that consists of two child nodes: a condition node, functioning as a Guard,
and an action node.

Initially, we generate the Maz-Qtable by iterating over all states visited during the
learning phase, identifying the task with the highest Q-Value. As a result, we construct
a list of state-action pairs. This compiled list is subsequently used as the input for the
proposed algorithm. The algorithm starts by interpreting the Max-Q table of the learned
policy.
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Figure 4.5.: Atomic unit as described in [2]

Contrary to the approach by Banerjee [2] and the subsequent refinements made by
Marques [25], our algorithm places more emphasis on actions than states. We first
establish the significance of all actions executed, with the frequency of occurrence in the
Max-Q table determining their importance. It is assumed that an action performed across
various states is considered more important than one executed in just a few states.

Next, we determine the state that was most prevalent for each action. Let us assume
an agent’s state is represented by the tuple (S, Sy), and its actions are represented by
Action A,,. The outcome of the learning phase and thus the Max-Q-Table is depicted in
Table We can thus infer that reaching state S; was the decisive factor for undertaking
Action A;. Consequently, the algorithm forms an atomic unit of S; and A, where a
query for S; serves as a Guard for Ay, and both are placed under a common sequence
node. This step is repeated for all actions in the Max-Q table.

State | Action
(S1,52) Ay
(S1,853) Ay
(S1,S4) Ay
(S3,55) | A
(S2, S5) Ao
(S1,55) | As

Table 4.1.: Example of Max-Q table

The algorithm may have formed multiple atomic units with common guards at this
stage. As our implementation does not rely on the concurrent execution of nodes, a
condition node cannot evaluate differently at different stages of a single tick’s traversal.
Thus, the next step combines atomic units with shared guards into subtrees under a
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selector node. Here, the atomic node with higher importance is placed first, and the
atomic unit of lesser importance is added as a subsequent child. The Guard of the
less significant atomic unit is replaced with its next most common sub-state to avoid
re-evaluating an already assessed state in the same tick.

As a last step, the algorithm places the action that was seen the least in the list of
ranked actions is used as a fallback node with no pre—conditionﬂ This type of uncondi-
tional fallback behavior was suggested by previous works that combined reinforcement
learning and behavior trees [34, [I1]. Using the example Max-Q table, the algorithm
chooses A3 as its unconditional fallback behavior. The [BT]created from these steps using
the example Max-Q table is shown in Figure

? » - S5 true?

- Perform Al

Perform A3 Perform A2

Figure 4.6.: Algorithm output using the sample Max-Q table

Our algorithm allows for creating small and compact behavior trees without building
large condition nodes or reusing action nodes in multiple locations of the tree. The
following snippets show the algorithm implemented in Python using a list of actions
ranked by prevalance, and a dictionary of action-state pairs, the latter also ranked by
prevalance, as input.

3A fallback node, not to be confused with the similarly named Selector-Node, is not a type of node in
the [BT] but a node placed as the last child of the root node, ensuring the agent acts, even if all other
nodes fail
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1 def create_behavior_tree(ranked_actions, action_guard_count):
behavior_tree = {"name": "root", "type": "Selector", "children": []}
fallback_node = ranked_actions[-1]

2

del

action_guard_count [fallback_nodel

ranked_actions.remove (fallback_node)
atomic_units = create_atomic_units(action_guard_count)
processed_units = merge_guards (atomic_units, action_guard_count)

for

action in ranked_actions:
if action in processed_units:
behavior_tree[’children’].append(processed_units[action])

behavior_tree[’children’].append(action_node(fallback_node))
return {"behavior tree: behavior_tree}

Listing 4.5: Behavior Tree Generation Algorithm

The create_atomic_units() function synthesizes atomic units from the collection of
ranked actions and their guards:

1 def create_atomic_units(action_guard_count):
atomic_units = {}

2

for

action in ranked_actions:

atomic_units.setdefault (guard[0][0], [])

action_node = action_node(action)

condition_node = condition_node (guard[0] [0])

atomic_units [guard [0] [0]]. append(sequence_node ([condition_node,

action_node]))
return atomic_units

Listing 4.6: Generating atomic units

Finally, the merge guards() function, generates sub-trees from atomic units with
common guards:

1 def merge_guards (atomic_units, action_guard_count):
processed_units = {}
for key, value in atomic_units.items():

2

guard_key = value[0][’children’][1][’name’]
if len(value) > 1:
sub_units []
sub_nodes = sorted(value, key=custom_key)
action = action_node(sub_nodes[0][’children’][1][’name’])
first = sequence_node([condition_node (key), action])
for item in sub_nodes[1:]:
action_ = action_node(item[’children’][1][’name’])
guard = action_guard_count [action] [1][0]
sequence = sequence_node ([condition_node(guard), action])
sub_units.append(sequence)
atomic_units[key] = selector_node([first, *sub_units])
processed_units [guard_key] = atomic_units[key]

]

return processed_units

Listing 4.7: Merging common guards

It is important to note that while our algorithm is written in Python, the libraries above
used for controlling autonomous agents have been implemented in C++. Guard nodes
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are generated from sub-states and are not known by the behavior tree library as Task
nodes. To reduce manual workloads, the algorithm, while performing the steps explained
above, also collects a list of guard nodes required to construct an atomic unit. This list is
then used to generate C++ code for each condition node and also generates a function
RegisterGeneratedNodes() that registers these guards with the Node-Factory component.
This is not necessarily part of the implemented algorithm but further attempts to reduce
manual workloads to develop these guards.

4.1.3. Pipeline

The behavior tree creation using our proposed algorithm is a three-phase process: the
learning phase, the BT]creation phase, and the evaluation phase, where the performance
of the autonomously created [BT]is assessed. Figure outlines these phases and their
sequence.

Learning Phase\
Experience Evaluation Online Learning " .
[CTF Simulation <~ CTF simulation Offline Learning <—@)

BT Creation Phqse\
Y

CGenerate MaxQ Table)—)CExport MaxQ Table)—)CRank Actions}
[Generate BT](—(Merge common atomic units)(—(Generate Atomic Units)

BT Evaluation Phase\
[Import BT]—)[Run CTF with BT]——)@

Figure 4.7.: Overview of the BT synthesis pipeline

We have implemented a pipeline linking the phases of behavior tree generation, facilit-
ating an automatic process of [BT] creation. The pipeline commences with the learning
phase, which consists of several steps. Initially, offline and online training of the [NPCp
takes place, populating the Q-Table. While optional, offline learning can expedite the
online learning period by providing the agents with a non-uniformly populated Q-Table.
The final step of the learning phase involves evaluating the acquired knowledge from
offline and online learning. This is done by re-initializing the simulation with the e-greedy
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value set to 0, thereby eliminating random exploration of the Q-Table. During this phase,
the Q-Table is treated as read-only, thus preventing updates to Q-Values.

The [BT] creation phase outputs a JSON-formatted behavior tree for each Max-Q table fed
into the algorithm. In this phase, the BT]generator generates the behavior tree and outputs
condition nodes as task classes, eliminating the need for manual writing of these leaf nodes.

This phase generates new condition classes that were unknown at the beginning of
the pipeline. Therefore, the final phase of the pipeline requires recompiling the application
to include these new conditions. It is crucial to note that all nodes must be registered with
the behavior tree before they can be used. Hence, the RegisterGeneratedNodes() must
be invoked to register these generated condition nodes with the Node Factory of the library.

To conclude, the pipeline reboots the CTF simulation with the automatically created
BTk to evaluate their performance. For a detailed explanation of the [Capture-the-Flag]
(CTE]) simulation, refer to Chapter 5.

4.2. Objectives and Assumptions

Like other [Genetic Programming| (GP]) methods and Banerjee’s proposed algorithm,
our algorithm allows us to autonomously generate a behavior tree without relying on
a behavior tree input. Other [RI] based ways to synthesize [BTk often depend on the
assumption that a task may not fail after being invoked [2] 25]. Our approach ignores this
assumption and, as such, allows us to omit to store the result of a task as a separate state
in the Q-table. The proposed approach will enable us to generate small and compact
behavior trees while reducing possible states. Chapter 5 details the exact implementation
of state configuration for an autonomous agent and shows that our algorithm can be
further applied to multi-agent settings to create several cooperatively acting BTk.

4.2.1. Objectives

The algorithm we propose for automatic behavior tree creation aims to reduce the
complexity of manual [BT] creation by leveraging a model-free reinforcement learning
approach. Inversely, the automatically created behavior trees enable a visual representation
of experiences gained during the learning period of such an approach and grant a better
understanding of the acquired knowledge by an autonomous agent.

Autonomous Behavior Tree Generation

The primary goal of this thesis is to explore the feasibility of autonomously generating
behavior trees without relying on pre-defined input trees while considering the limitations
of traditional approaches. Traditional methods for behavior tree construction include
genetic programming, which does not require manual intervention but often generates
many suboptimal trees before finding a satisfactory one. Conversely, approaches that
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utilize reinforcement learning techniques without manual intervention typically focus on
improving existing behavior trees rather than generating them from scratch. To address
these limitations, the proposed algorithm leverages model-free reinforcement learning
techniques to automatically generate behavior trees based on the experiences gained
during the learning phase of an autonomous agent. By doing so, we aim to reduce the
complexity and manual effort involved in behavior tree creation, providing a more efficient
and scalable approach.

Cooperative Behaviors in Multi-Agent Settings

The application of behavior trees extends beyond single-agent scenarios, as many video
games involve multiple non-player characters (NPCs) that require cooperative behaviors.
To address this, we extend our algorithm to a multi-agent setting, where each agent
operates in an environment that necessitates collaborative behavior. By training agents
in a competitive setting without relying on opponents with pre-defined strategies, we
alm to create behavior trees that exhibit effective cooperative behaviors. This objective
aims to enhance the gameplay experience by avoiding repetitive behaviors and fostering
dynamic and interactive interactions between NPCs.

Understanding Acquired Knowledge

In addition to the autonomous creation of behavior trees, we aim to provide a visual
representation of the experiences acquired by an autonomous agent during the learning
process. By analyzing and interpreting the behavior trees generated by our algorithm, we
can gain insights into the knowledge and strategies learned by the agent. This objective
contributes to a deeper understanding of the acquired knowledge, enabling designers and
developers to evaluate and refine the behavior trees based on the agent’s performance
and behavior.

4.2.2. Assumptions

Our research is grounded in several assumptions that shape the design and implementation
of our algorithm. These assumptions guide our decision-making process and provide a
basis for evaluating our approach.

Firstly, our algorithm assumes that a task can fail after being invoked, deviating from
other reinforcement learning-based approaches that rely on this assumption [2][25]. By
disregarding this assumption, our approach allows us to omit to store the result of a task
as a separate state in the Q-table. Furthermore, unlike previous methods, we do not reuse
action nodes in multiple locations within the behavior tree. This deliberate avoidance
of action node reuse aims to enhance the clarity and maintainability of the generated
behavior trees. Furthermore, our algorithm assumes that agents in a multi-agent setting
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interact with the environment and each other. This assumption is essential for capturing
the dynamics of cooperative behaviors and facilitating effective collaboration among the
agents. By extending the learning phase for each agent, such that an agent receives a new
state every time a different agent acts, we account for the interactions and dependencies
among the agents, leading to more accurate and context-aware behavior tree generation.

However, it is important to note that the proposed algorithm does not guarantee safe
behavior. While the algorithm aims to create effective behavior trees, it does not explicitly
incorporate safety constraints during tree generation. Safety considerations may include
avoiding actions that could lead to undesirable consequences and validating a [BTk layout
according to domain rules.
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This chapter provides a detailed description of the custom simulation environment de-
veloped to test the effectiveness of our behavior tree (BT) creation algorithm. The
environment represents a competitive game where two teams, composed of two autonom-
ous agents, strive to outperform each other. Using the libraries and the pipeline introduced
in Chapter 4, this simulation primarily evaluates our algorithm’s performance in training
autonomous agents to function as non-playable characters ) within the game.

Further, this chapter elaborates on the experimental arrangements deployed for the
autonomous and automated acquisition of BTs. It also presents the criteria used to
evaluate the quality of the BTs generated by our algorithm.

5.1. A Capture-The-Flag Simulation

Capture-the-Flag (CTF) is a common team-versus-team game format characterized by
competitive gameplay dynamics, where teams play for victory by outscoring their oppon-
ents. In this game, each team possesses a base and an initial flag, aiming to accumulate
points by successfully infiltrating the opponent’s base, capturing their flag, and safely
returning it to their base. Concurrently, players can engage in combat, strategically
hindering the opposing team’s progress or temporarily reducing their team’s numerical
strength.

“CTF” encompasses various rule sets, introducing distinctive constraints and gameplay
dynamics. For instance, a commonly employed constraint entails that a player can only
earn a point if their team’s flag remains in their possession, fostering attack-and-defend
behaviors and a cooperative approach among team members. Given the cooperative
and strategic nature of this game type, it was selected as an experimental evaluation
framework to assess the effectiveness of our algorithm.

By employing CTF as the experimental context, we aim to evaluate the performance of
our algorithm under the diverse constraints and dynamics inherent in this game format.
The experimental evaluation involves assessing the algorithm’s ability to generate effective
Behavior Trees (BTs) that exhibit adaptive and cooperative behaviors in pursuit of victory.
This choice of experimental framework offers valuable insights into the algorithm’s capacity
to address complex decision-making challenges in dynamic, team-oriented environments.
Consequently, the selected CTF setting serves as a suitable and comprehensive domain
for testing and evaluating the efficacy of our algorithm’s BT generation capabilities.
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5.1.1. Architecture

We now turn our attention to the architecture and design decisions of the application
developed to evaluate the effectiveness of the proposed algorithm. The program has
been developed as a Command Line Based application that instantiates several CTF
simulations sequentially, based on the parameters passed upon program start. Each CTF
game is a headless instance of a game. We decided against real-time visualization of the
games to allow faster execution of the training and evaluation phases.

Figure in the appendix depicts the classes relevant to the experimental setup of our
work and how these classes integrate the behavior tree and Q-Learning implementations
detailed in the previous chapter. The package Application house the Application class
that acts as a manager class during the application’s lifetime. It also acts as a man-
aging class for Simulation-Objects, handles configuration values for each game instance,
and in the case of the learning phase, also initiates the Offline-Learning. It is also
responsible for transferring Q-Tables from [NPCk between game instances. The Applica-
tion class can be seen as a framework for enabling the automatic creation of behavior trees.

The Simulation class represents a single CTF game instance. It is responsible for
instantiating all objects required for successful game execution, upholds business rules,
and provides the main feedback loop for autonomous agents driven by a reinforcement
learning policy. In addition, the package Application.Simulation contains the following
classes, which are coupled to the Simulation class:

e Team - Container storing a reference to a team’s base and players.
e Base - Container storing flag information.
o NPCGameObject - Representation of one player in the game.

e BehaviorComponent - Controlling a player’s policy in the game by calling the
update()-function of the AIController class.

o AlController - Virtual class stored by the BehaviorComponent.

e RL-/BT-/StaticController - Representation of the actual policy defining the player’s
behavior.

e Map - Map-relevant information such as the location of entities in the game and
provides distance calculation and pathfinding functionality.

5.1.2. Game Rules

The experimental setup employs simple rules to define win conditions and game mechanics.
As previously stated, tabular reinforcement learning approaches encounter performance
degradation, and learning becomes inefficient as the number of state-action tuples increases.
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Therefore we deliberately implemented a simple ruleset, omitting intricate complexities.
The following are the rules for the [CTF]| game utilized in this experiment:

The game is played in a series of ticks, each representing a full round. Within a
tick, each player takes one action.

The game is played on an N x N-sized map in a 2D space composed of tiles that
include randomly placed barriers and pickups.

Two teams participate in the game, each with two players identified by their
respective team and player indices.

Each team has a flag located at its base. The bases are at map coordinates (1, 1)
and (N-1, N-1).

If a player reaches the opponent’s base while the opponent’s flag is present, the
player picks up the flag. The flag moves with the player.

When players return to their base, their health and ammunition are replenished. If
a player has the opponent’s flag, their team is awarded one point. The flag is then
returned to the opponent’s base.

The game is finished when a pre-configured amount of ticks expire, or a team can
achieve a pre-configured score before tick expiration. The team with the higher
score wins the game. Otherwise, the game is declared a draw.

Every player starts with 100 health points. Health points decrease when a player
incurs damage, such as when another player attacks them. If a player’s health
falls to zero, they drop the flag (if they have it), which is then returned to the
opponent’s base. The player becomes inactive for seven ticks, during which they
cannot perform any actions. After this respawn period, the player reappears at
their base with full health and ammunition, ready to participate again.

5.1.3. Participants in the Game

Each participant in a game with a health value greater than zero can take one of the
following actions during a game tick:

FireAtEnemy - This action enables a player to engage an opponent in combat. To
do so, the player must have a line of sight to an opponent within half the map’s
length (N/2) and have sufficient ammunition. The action fails if these conditions
aren’t met, or there are no active opponents. Upon successful execution, the player’s
ammunition count decreases by one, and the opponent’s health is reduced by a
base damage value, further adjusted based on the distance. Refer to Table for
damage calculation.
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o MoveToEnemyFlag - This action guides the player one unit closer to the opponent’s
base, regardless of the flag’s presence. The action succeeds once the player arrives
at the destination and returns a running status otherwise. The path between
the player’s current location and the opponent’s base is determined using the A*
algorithm.

o MoveToHome - This action leads the player one unit closer to their base. The
action succeeds once the player arrives at their home base and returns a running
status otherwise.

o MoveToHealthPickup - This action drives the player one unit closer to the nearest
health pickup. The action fails if another player retrieves the pickup before the
player arrives. Otherwise, it succeeds, restoring the player’s health to 100. If the
player has not reached the target but moved closer, this action returns a running
state.

o MoveToPowerup - This action directs the player one unit closer to the nearest
powerup pickup. The action fails if another player picks up the power-up before
the player arrives. Otherwise, if it succeeds, the player’s ammunition is restored to
the full value, and a permanent damage bonus is granted for future attacks. If the
player has not reached the target but moved closer, this action returns a running
state.

e [dle - This action involves the player standing still. The player’s position does not
change when this action is taken. It always succeeds.

Distance d Base Damage Range
d>M -
M<d>M/2 1-5
M/2>d>M/4 6-12
d< M/4 13- 18

Table 5.1.: Damage calculation based on distance (d) and Max Fire Distance (M)

The behavioral actions that each player can perform are integrated into the node classes
of the behavior tree structure. These node classes invoke the related member functions
from the player’s class, and the return values of these functions signify the state of the
task - whether it is successful, failed, or in progress. The illustration does not include
these classes to keep the application’s class diagram clear and concise.

In each game tick, an updating process is conducted for the teams and players, starting

with the instances created first. The order of these updates, while determined by the
creation sequence, does not affect the game’s eventual outcome.
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All player instances can utilize the range of functionalities the game map offers, enabling
them to perform pathfinding, compute line-of-sight, and calculate distances between any
two tiles.

Each player’s actions in the game are driven by the BehaviorComponent, while the
specific nuances of these actions are defined by the AIController class. This abstract base
class branches into three classes that handle agent control using different approaches:
reinforcement learning, behavior trees, and a static if-else logic structure. The team’s
policy sets the control approach for its agents - be it reinforcement learning, behavior
trees, or the static if-else structure. Within a team, all players adhere to the same policy,
maintaining uniformity and avoiding a mix of different control approaches within the
same team. One of the key objectives of this experiment’s design is to evaluate how well
a team performs when it consists solely of agents controlled via reinforcement learning.

Team Reinforcement Learning

The agents of this team utilize the RLController component within their BehaviorCom-
ponent, guiding their in-game actions. Each agent operates with an individual instance of
the QL Library, thus owning a unique Q-Table. This structure ensures that, although
the same controller guides all agents, they each acquire distinct experiences and develop
different knowledge bases. This process facilitates a multi-agent learning environment,
with agents learning independently rather than sharing experiences.

Team Static

To provide a comparative measure for the effectiveness of the reinforcement learning and
automatically generated behavior tree approach, a second team of Non-Player Characters
(NPCs), termed Team Static, was developed. The agents in this team follow a static
decision-making process controlled by an ¢f — else structure, akin to the predator setup
detailed in Dey et al. (2013). The agents are characterized by an aggressive policy
prioritizing attacking opponents over scoring through flag capture. It is crucial to note
that this team’s policy parallels the reward table configuration of Team Reinforcement
Learning. However, a significant difference lies in the decision-making process - the agents
in Team Static execute static decision-making and are incapable of adaptive behavior
over time. This team thus serves as a control group to gauge the relative efficacy of
reinforcement learning and behavior tree approaches.

5.2. Learning Phase

We now detail applying the Q-learning process to the reinforcement learning-based actors
in the [CTEF] simulation. Recall that the learning phase is the first step in our pipeline,
and the experiences and knowledge accrued by the players during this phase form the
foundation for the exported behavior trees.
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The learning rate and discount factor, integral to the Q-learning algorithm, have been
set to 0.9, indicating a high emphasis on both learned and future rewards. The e-greedy
policy, a critical aspect that controls the trade-off between exploration and exploitation,
is set at 0.3. These values have been chosen based on the successful implementation of
reinforcement learning parameters in the work of Dey et al. [11].
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Figure 5.1.: Reward-Action cycle in a multi-agent setting.
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Figure illustrates the action-reward cycle for a single agent within the reinforcement
learning process. However, in our multi-agent CTF simulation, a team comprises multiple
agents, each driven by a distinct Q-Learning instance. To accurately reflect this, we
extend the depicted learning cycle for each agent to receive a new state every time a
different agent acts.

This is crucial due to the interconnected nature of multi-agent environments. Let us
assume the agents are indexed by A,. An action performed by an agent, A;, might
dramatically alter its state (such as health, ammo count, or status of the flag) and,
consequently, the state of another agent A, by directly or indirectly interacting with it.
This highlights the necessity for every agent to adapt to the actions of others continuously.

5.2.1. States of an NPC

Each actor in the simulation consists of several attributes that collectively define its
current state, such as a tuple of x,y coordinates on the map, the number of health points
or ammunition left, and a respawn countdown that indicates how long the [NPC| must
remain motionless, among others. To manage the complexity associated with the size
of the state-action space, we employed a discretization approach similar to previous
studies |11}, 25]. This approach limits the number of states by categorizing the attributes
into predefined classes.

e Health

e Ammo count

40



5.2. Learning Phase

e Distance to the closest enemy
e Status of the opponent’s flag

e Status of their teammate

These attributes are categorized into None, Low, M edium, High values. Health, ammo
count, and distance to the opponent are discretized into these categories based on
thresholds. Specifically, any value above 66% is considered High, whereas a value below
33% is designated as Low. A value of None denotes a state with health or ammo count
below 1 or when the agent does not have line-of-sight to an opponent. Table [5.2] provides
detailed definitions for the categories associated with the “Flag” and “Teammate” States.

Flag State Teammate State
Player does not have the flag &
Player cannot capture the flag

None Teammate has health below 1

Player does not have the flag & | Teammate does not have the flag &
Player can capture the flag Teammate’s last action was not to get flag
Teammate does not have the flag &
Teammate’s last action was to get flag

Low

Med | Player has the flag

High - Teammate has the flag

Table 5.2.: Explanation of flag and teammate states

This discretization yields a theoretical total of 4° = 1024 potential states. However,
certain limitations and constraints on these conditions effectively reduce the size of the
state-action space.

Firstly, states in which the Health condition is None are excluded, as an agent with zero
health cannot perform any actions. This condition eliminates a quarter of the theoretical
state space, reducing the number of potential states from 1024 to 768. Next, states with
High Flag conditions are also excluded, as this state is undefined in our context. This
condition also eliminates a quarter of the remaining state space, reducing the potential
states from 768 to 576.

Finally, several combinations of states are deemed impossible due to game logic. These
are:

e States where the agent and the teammate possess the flag (Flag condition = Medium,
Teammate condition = High). Since there is only one flag in the game, both agents
can’t have the flag simultaneously.

e States where the agent cannot capture the flag and the teammate does not possess
the flag (Flag condition = None, Teammate condition = High). These states are
logically inconsistent as they imply that neither agent can take action on the flag.
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e States where the agent can capture the flag but the teammate already has the flag
(Flag condition = Low, Teammate condition = High). These states are logically
inconsistent, as an agent cannot capture the flag if their teammate already holds it.

We further reduce the potential state space by excluding these impossible state com-
binations. An exhaustive check of these conditions, performed by iterating through each
possible state, yields 336 valid states for the NPC within our game simulation.

This state space reduction enables us to create a manageable and realistic Q-Table
for the reinforcement learning process, ensuring that our agents learn based on practical
and possible scenarios within the game environment.

5.2.2. Reward Structure

The reward structure shapes the learned behavior of [RI] agents. In the case of our RL
agents in a capture-the-flag style game, this structure is pivotal for promoting actions
that lead to scoring points, preserving an agent’s life, and eliminating opponents.

Actions that align with these goals, such as scoring points, eliminating opponents, or pre-
serving an agent’s life, are positively reinforced with a reward of +1. Conversely, actions
that potentially jeopardize these goals, for example, moving away from the home base
when in possession of the flag, are negatively reinforced with a reward of -1. Particularly
detrimental actions to the team’s success, such as choosing to idle when possessing the
opponent’s flag, are strongly discouraged with a reward of -2.

Moreover, a system of bonuses is implemented that further adjusts the reward val-
ues based on specific circumstances, adding nuance to the learned behaviors. These
bonuses are cumulative and applied in addition to the basic rewards from the reward
table, reinforcing or negating the value of actions under specific conditions. The detailed
configuration of the reward table and bonus system is discussed in this section.

Reward Table

The rewards given to the agent directly influence the structure of the behavior tree. The
reward structure has been configured such that the agents strive to accumulate points
and demonstrate self-preservation and aggression when necessary. This should also be
reflected in the automatically created [BTk. Specifically, the reward table for an agent’s
Q-Policy is configured such that actions that lead to scoring points, eliminating opponents,
or preserving an agent’s life are awarded +1. Actions detrimental to these goals are
penalized with -1. If an action could potentially undermine the team’s prospects (such
as the agent opting for the Idle action while possessing the opponent’s flag), a steeper
penalty of -2 is enforced. An abridged depiction of the Q-Table is presented in Table
Furthermore, a bonus structure is also in place to further reward or punish certain actions
in particular instances. The bonuses are cumulative and skew the overall reward value,
reinforcing an action’s value under a specific circumstance.
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These are as follows:
e Scoring a point for the team will give the reward an additional bonus of +1.
e Dropping an opponent’s health below one will give an additional bonus of +1.

e Choosing any action that results in a successful state of that tick function will grant
a +1 bonus.

e Choosing any action that results in a failure state of that tick function will reduce
the bonus by -1.

e Choosing one of the pickup actions grants an additional +1 bonus if a health kit or
powerup was found and picked up.

Health | Ammo | Dist. Enemy | Flag | TeamMate | Reward
MoveToEnemyFlag X X X L N/L +1
MoveToEnemyFlag X X X X H -1
MoveToHome X X X M X +1
MoveToHome X X X N X -1
FireAtEnemy X L/M/H L/M/H X X +1
MoveToHealth L/M X N N X +1
MoveToPowerup X N/L N N X +1
Idle X X N N H +1

Table 5.3.: An abbreviated version of reward table.
x =any, N = None, L = Low, M = Medium, H = High

Partial Reward Table

A significant facet of this research endeavor is minimizing the labor-intensive process
required for generating credible and effective behaviors embodied in behavior trees.
Formulating a behavior tree is an intricate process, and the same complexity extends to
determining a detailed reward table. In light of this, we evaluate an automatically created
[BT] this time circumventing the reward table presented earlier and instead implementing
bonuses awarded each tick. We supplement this setup by adding a bonus of +1, provided
when the agent opts for the MoveToEnemyFlag action while not having the flag, as well
as a bonus of +1 when the MoveToHome action is selected with the flag in possession.
For this experimental setup, the pre-population of the Q-Table during an offline learning
phase is bypassed, given that the reward table is vacated, and bonuses are exclusively
computed during online learning.
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5.2.3. Opponent Selection

We extend the multi-agent setting by replacing “Team Static” with a second “Team Rein-
forcement Learning” during the online learning period. The objective of this experiment is
to evaluate the necessity of using manually crafted adversaries in a competitive setting or
if our proposed algorithm can also generate well-performing behavior trees if the preceding
[RT] agents were only able to compete against other [RT] agents.

The offline learning period instantiates and populates a singular Q-Table to instan-
tiate all four autonomous agents. Each agent operated under its own Q-Policy, drawing
from an individual Q-Table. The conclusion of each game saw the successful team’s
Q-Table duplicated in its entirety, forming the basis for the agents in the succeeding
simulation. The same number of games is used as before. The automatically generated
BTk compete against “Team Static” under the same constraints as the reinforcement
learning agents.

The final phase of the experiment involves the evaluation of the automatically gen-
erated behavior trees. These trees, products of the reinforcement learning process, were
employed by agents to compete against “Team Static” under identical constraints applied
to the reinforcement learning agents.

5.2.4. Training Methods

Two additional trials were conducted within the experimental framework to explore the
avoidance of local optima and evaluate different training approaches. The objective was to
investigate the impact of varying the knowledge transfer policies during the learning phase
of the [CTEH simulation. The performance of the automatically generated behavior trees
was assessed using different policies for transferring knowledge to subsequent simulations.

The e-greedy policy allows for random exploration rather than always selecting the
best action and serves as a guiding principle to avoid local optima during the learning
process. Expanding on this concept, we apply a similar notion on a global scale by defining
policies that determine when knowledge should be transferred to agents in subsequent
CTF simulations. The performance of generated [BTk using the following knowledge
transfer policies is compared.

Knowledge transfer occurs when:

1. The agents win a game or achieve a new high score.
2. The agents win a game or achieve a new high score or with a 33% chance.

The first policy can be seen as a greedy policy, favoring winning strategies, while the
second policy resembles the e-greedy policy employed during the online learning phase. It
is important to note that both policies limit the number of training episodes, as a fixed
number of games are played before behavior tree generation takes place. This investigation
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aims to examine the outcomes of applying these policies and determine whether favoring
certain strategies can lead to improved results compared to utilizing the maximum number
of learning episodes and the impact of these policies on the automatically generated
behavior trees.

5.3. Adaptiveness and Performance

By subjecting the automatically generated [BTk to various scenarios, we aim to examine
their robustness and resilience in navigating the challenges an adversarial team poses. The
performance and effectiveness of the reinforcement learning algorithm and the subsequently
automatically created behavior trees are evaluated by competing in the CTF simulation
against the static team described in this chapter. The performance analysis encompasses
various metrics, including wins, losses, ties, and overall success rates, providing insights
into the effectiveness and competitiveness of the [BTk within this dynamic environment.
We further investigate the performance of the automatically created trees under settings
previously not seen during the learning phase.

5.3.1. Map Sizes

The learning phase takes place for its entire length under the same constraints. During
game development, it is expected that parameters like map sizes and layouts can change.
Considering the overhead associated with reinforcement learning algorithms, it is not
favorable to regularly restart the learning of an autonomous agent to be able to adapt to
new environments. We use smaller and larger map sizes to evaluate the adaptiveness to
these changing settings than those used to train the agents. The performance on map
sizes not considered during learning provides an insight into the ability to adapt to the
automatically created behavior trees.

Through these adjustments, we gain insights into the adaptability of the automatic-
ally generated behavior trees in dynamic environments for success in CTF simulations.

5.3.2. Game Length

Similar to the map size, the length of each game is a fixed value during the learning phase.
However, our experiment aims to investigate the adaptability of automatically created
behavior trees to varying game lengths. In this experiment, we explore two approaches:
explicit and implicit modifications.

In the explicit approach, we adjust the tick length, controlling the overall duration
of the games. Shortening the tick length increases the pace, requiring faster decision-
making, while lengthening it allows for more strategic analysis. This approach examines
how behavior trees adapt to different time constraints.

45



5. Experimental Setup

In the implicit approach, we modify the number of points required to win without
changing other parameters. Reducing the points requires quick flag capture, potentially
demanding more aggression while increasing the points encourages reward behaviors. This
approach explores the adaptation of behavior trees to varying game lengths while keeping
time constant.
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In this Chapter, we investigate the outcome of the experiments described in Chapter 5,
present our findings, and discuss the results of our experiments. The CTF simulation
can be run under multiple configurations and allows changing various game parameters.
For answering our research questions, we use a default configuration which is depicted in
Table Unless otherwise stated, this configuration is used for each experiment.

Parameter Value
Map Size 100 x 100
Tick Limit 10’000
Maximum number of games 30
Score to win 100

Table 6.1.: Default CTF settings

The parameters were carefully selected to enable extended training periods for the
forcement Learning] agents while maintaining the application’s overall performance.
To assess the efficacy of the autonomously generated behavior trees (BTs), we conducted
evaluations using a tenfold increase in the number of games compared to the training set.
This larger evaluation set helps mitigate the impact of statistical outliers and provides a
more robust assessment of the [BTk performance.

6.1. Comparison of Opponent Selection

In this experiment, we look at the outcome and performance of automatically created
behavior trees when the previously learning agents competed against other reinforcement
learning agents in the learning phase of the pipeline, as opposed to agents that learned by
competing against the team with static decision-making. By comparing these scenarios,
we gain insights into the effectiveness of the autonomously created behavior trees in
dynamic competitive environments.

6.1.1. RL vs Static

The overall results of the learning (Online Learning) and evaluation phases (Experience
and BT Evaluation, respectively) are shown in Table The success rate of 93% games
won during the evaluation period of the learning phase indicates that the agents have
successfully derived a winning policy from the experiences gained in the learning period.
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Using the proposed algorithm to export behavior trees for each reinforcement learned
agent, we can achieve a success rate of 80% showing promising results in our creation
method.

Phase Wins | Losses | Ties | Total | Success Rate
Online P 24 4 30 0.06
Learning
Experience 28 p 0 30 0.93
Evaluation
BT Evaluation
(BT vs. Static) 240 39 21 300 0.8

Table 6.2.: Performance of “Team Reinforcement Learning” and the resulting Behavior
Tree

A collection of scores achieved per game after the learning period is depicted in Fig-
ure [6.1] while Figure [6.2) depicts the scores during the evaluation period of the generated
BT. We compare the game results of these evaluations to gain insight into the effectiveness
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401
QL 301
o
[®)
[0p]
20 3
101
0 , —
Team RL Score Team Static Score
Team RL Score Team Static Score
count 30 30
mean 29.233 22.600
std 3.748 4.320
min 19 16
50% 30 22
max 36 31

Figure 6.1.: Learning Phase Evaluation (RL vs. Static)
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6.1. Comparison of Opponent Selection

of the automatically created behavior trees. The team using the automatically created
Behavior Trees allowed for games with overall higher final scores than the [RL] team in
the evaluation period, with the overall performance being similar, with an equally small
spread of points achieved and an overall higher mean score than the static team. The
tables in this figure can also be found in the appendix.
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Team BT Score Team Static Score
count 300 300
mean 40.977 36.757
std 2.354 2.999
min 34 27
50% 41 37
max 48 45

Figure 6.2.: Behavior Tree Evaluation (RL vs. Static)

To get a better understanding of this result, we further turn our attention to Figure [6.3]
which depicts the progression of score results during the learning phase. While there is no
clear indication that the team learning the game was able to adopt a significantly better
strategy to point scoring over time, it is, however, visible that the agents determined
a better policy of defense, as the point difference between the two teams decreased
drastically when comparing the first episode of learning with the last.

The agents’ increased understanding of a winning policy can be further seen by comparing
the result progression of individual games. Figure [6.4] plots the progression of points
per team for the first episode of learning. Figure shows the point progression of the
last episode while learning. Comparing the respective performances of each team during
these episodes it is visible, that the team utilizing Q-Learning to find an optimal strategy,
struggled for several hundred ticks in their first game to score a point and allowed their
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Figure 6.3.: Result progression of all games in the learning phase.

opponents to act aggressively. The point progression of the last episode shows that the
[RT] agents have found a working strategy to score points faster than their opponents
while also keeping the opponents from scoring themselves for a long time. However, the
random exploration policy of the agent’s Q-Learning method, and the performance of the
static team, ultimately still led to a loss during the learning phase. The results obtained
from this experiment show that our algorithm can be applied to multi-agent settings.
Figure [6.7 and Figure [A-3] show the automatically created Behavior Trees used in this
experiment. The [BTk possess inherently different structures from each other, but both
model strategies lead to winning the game.

Finally, we turn our attention to Figure [6.6] which shows the final score of each game
during evaluation of the BT. We see, that the automatically created BTs were able to
outperform their opponents in a majority of cases, often by a significant margin.

6.1.2. RL vs RL

We assessed the performance of autonomous agents and behavior trees during the online
training phase, wherein the team composed of reinforcement learning agents was not
pitted against opponents with static decision-making capabilities. Instead, both teams
consisted of autonomous [RL] agents. The performance of the final Q-Table and the
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Figure 6.4.: Learning phase against static opponent first episode.

resulting behavior tree, generated automatically from this RL approach, is illustrated in
Figure which depicts the performance of the agents after learning has concluded.

Phase Wins | Losses | Ties | Total | Success Rate
RL vs Static |, P P 30 0.86
Evaluation

BT Evaluation

(BT vs. Static) 182 94 24 300 0.61

Table 6.3.: Performance of the “RL vs RL” learning method and the resulting Behavior
Tree

We see performances comparable to the previous phase, with the RL agents winning a
majority of the games played, albeit less consistent. The performance of the generated
behavior trees is presented in Figure While the generated trees seemingly were more
successful at scoring against the static opponents, they also allowed their opponents to
score more points than the players of the previous phase, leading to narrower results and
ultimately a slightly worse performance than before. The tables have also been included
in the appendix.
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Figure 6.5.: Learning phase against static opponents; Last episode.

The outcomes of this experiment reveal promising results, indicating that the fully
autonomous creation approach yields superior results compared to the methodology
employed in the previous section. The result of all games played in this evaluation phase is
presented in Figure [6.10] The results show that the automatically created behavior trees
consistently won against their opponents, however with closer final results than before.
An example of an automatically generated behavior tree of this experiment is presented
in Figure The less aggressive behavior that leads to higher-scoring opponents can
be seen in this tree. The FireAtEnemy action is only selected when an opponent is close
to the agent. As the static team has been configured to attack their opponents at the
earliest convenience, even at the expense of lower damage output, it allowed the static
team to score more points overall.

Upon analyzing the overall performance of the resulting behavior tree, we observed
similar mean, minimum, and maximum values for the game results when compared to
the preceding reinforcement learning team. However, it is noteworthy that the respective
opponents of each team exhibited significantly different performances. These findings
suggest that the generated behavior trees exhibited a more offensive inclination than
defensive tendencies. While they achieved comparable scores to their counterparts, they
seemed to encounter difficulties effectively defending their flag.
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Figure 6.6.: Score Progression over all games during Behavior Tree evaluation (static
opponents).

6.2. Capability to Adapt

The adaptability of the autonomously generated behavior trees was evaluated by assessing
their performance in games with different map sizes and game lengths (ticks per game).
The results provide insights into the effectiveness of these behavior trees in various gaming
scenarios. We compare the results in this section with the performance displayed in

Table (.21

6.2.1. Map Sizes

Changing the size of a map affects the game in multiple ways: Smaller map sizes lead
to more combat situations, while larger maps lead to harsher punishments when losing
the opponent’s flag due to longer travel times. This section examines the adaptability of
the autonomously generated behavior trees on maps of different sizes. Table [6.4] depicts
the outcome of games played on maps smaller and bigger than the one used to obtain
training data.
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Figure 6.7.: A BT created from experiences gained competing against the static team

Map Size | 75 x 75 | 100 x 100 | 150 x 150
Wins 182 240 226
Losses 92 39 49

Ties 25 21 25
Total 300 300 300
Success 0.61 0.8 0.75

Table 6.4.: Performance of automatically created BTs on differently sized maps

Table [6.4] depicts the outcome of games played on maps smaller and larger than the
one used for training. The results demonstrate that the autonomously generated behavior
trees consistently achieve a success rate above 50% across all map size configurations.
This indicates that the behavior trees adapt reasonably well to varying map sizes and
maintain a competitive performance.
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Figure 6.8.: Learning Phase Evaluation (RL vs. RL)

A summary of all games played is depicted in Figure[6.12] The similarity to the previously
shown results exhibits that the automatically generated behavior trees are capable of
being deployed even on various map size configurations.

Overall, the performance outcomes on different map sizes provide valuable insights
into the adaptability and effectiveness of the autonomously generated behavior trees. The
success rates indicate their ability to navigate diverse map configurations and maintain
competitive gameplay, showcasing their potential for deployment in various game scenarios.
By leveraging their learned experiences, the behavior trees demonstrate their adaptability
to the specific challenges posed by different map dimensions.

6.2.2. Game Length

The duration of a game can be manipulated by adjusting the score required for victory or
the maximum number of ticks allowed. In the default configuration, neither team reached
the score threshold for an early game termination, necessitating the utilization of reduced
score values for the experimental scenarios presented in this section.
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First, we investigate the influence of modifying the number of ticks per game. Fig-
ure [6.5| presents the outcomes of this experimentation. Analogous to the adjustment of
map sizes, the behavior trees generated through the automated process exhibit remarkable
adaptability, showcasing no difficulties in accommodating shorter and longer games.

Table 6.5.: Performance of automatically created BTs in games of various tick lengths.

Shorter games demand swift point-scoring and punish losing in combat situations more

Figure 6.9.: Behavior Tree Evaluation (RL vs. RL)

Ticks | 5’000 | 10°000 | 20°000
Wins 178 240 223
Losses 77 39 64
Ties 45 21 13
Total 300 300 300
Success | 0.59 0.8 0.74

harshly, while longer games allow more leniency for both sides.
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Figure 6.10.: Score Progression over all games during Behavior Tree evaluation (RL vs.

RL).

Next, we modify the game length by significantly reducing the score required for victory.
The results obtained from this experiment are summarized in Table [6.6] which exhibits
outcomes consistent with the previous analysis.

Score 25 50 | 100
Wins 202 | 193 | 240
Losses 98 86 39
Ties 0 21 21
Total 300 | 300 | 300
Success | 0.67 | 0.64 | 0.8

Table 6.6.: Performance of automatically created BTs in games of score to win reduction.

Notably, the performance of the automatically created behavior trees remains consist-
ently promising across diverse game-length configurations. Their success rates surpass
again the 50% threshold, indicating their competence in adapting their strategies to suit
different gameplay durations. This underscores the robustness of the generated behavior
trees, enabling them to navigate and respond to various game parameters effectively.
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Figure 6.11.: Generated of the “RL vs. RL” experiment.

6.3. Impact of Training Policies

Now, we investigate the effects of fine-tuning policies on Q-Table learning in the context of
the generated [BT| using the proposed algorithm. Our analysis focuses on two aspects: the
influence of various knowledge transfer strategies between two [CTE| simulations during
the Online-Learning phase when pitted against a static team, and the examination of
the consequences of employing a partial reward table that exclusively utilizes the bonus
structure within an environment comprising reinforcement learning agents.

To explore the impact of knowledge transfer strategies, we evaluate different approaches
for sharing learned policies between two CTF simulations. By assessing the created [BT]
performance during the Online-Learning against the static team, we aim to determine
the most effective strategy for transferring knowledge and leveraging it to enhance the
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Figure 6.12.: Summary of results on a 150 x 150 map

agent’s decision-making capabilities.

Furthermore, we investigate the consequences of employing a partial reward table in
learning. Specifically, we focus on utilizing the bonus structure as the sole component
of the reward table in an environment populated by reinforcement learning agents. By
isolating the impact of this partial reward structure, we aim to assess its influence on
the generated [BT| and understand its implications for the agent’s learning and overall
performance.

6.3.1. Knowledge Transfer Strategies

The knowledge transfer policies are implemented to favor winning strategies but overall
limit the total amount of learning episodes for the final Max-Q table. Table presents
the results of the two knowledge transfer policies. It is important to note that the total
number of games played during the learning phase was fixed, regardless of the knowledge
transfer policy.
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Comparing the success rates, the “Greedy” policy had a success rate of 0.49, while
the “Epsilon Greedy (0.33)” policy had a success rate of 0.52. These success rates repres-
ent the proportion of favorable outcomes achieved by the BTs during evaluation.

Greedy Epsilon Greedy (0.33)
RL Evaluation | BT Evaluation RL Evaluation | BT Evaluation
Wins 13 147 24 157
Losses 16 119 6 106
Ties 1 34 0 37
Total 30 300 30 300
Success 0.43 0.49 0.8 0.52

Table 6.7.: Comparison of two knowledge transfer policies

Interestingly, despite the intention to prioritize winning behaviors, both policies demon-
strated inferior performance compared to the approach of always transferring knowledge.
This is because fewer knowledge transfers in these policies correspond to fewer training
episodes due to the fixed number of games in the learning phase.

These findings suggest that more frequent knowledge transfer improves performance
in the generated BTs regardless of the specific criteria. It highlights the importance of
knowledge sharing and accumulation throughout the learning process.

6.3.2. Reward Table Structure

Table presents the evaluation results obtained after omitting the reward table and
offline learning in the RL vs RL experiment. In this scenario, the synthesized [BT] is
generated solely based on the experiences acquired during the learning phase, using an
efficient reward and bonus structure.

RL Evaluation | BT Evaluation
Wins 19 186
Losses 10 78
Ties 1 85
Total 30 300
Success 0.64 0.62

Table 6.8.: Results after omitting reward table and offline learning.

The evaluation results demonstrate the close performance alignment between the BT
and the reinforcement learning agents. The BT exhibits promising results, showcasing a
success rate of 0.62, closely following the success rate of 0.64 the reinforcement learning
agents achieved during the evaluation period.
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These findings suggest that our algorithm enables the efficient creation of well-performing
BTs with minimal manual labor, leveraging an effective reward and bonus structure
during the learning phase. This highlights the potential of our approach to streamline
the development of adaptive and proficient autonomous agents in complex environments.

60.4. Results

The results presented in Section 6.1 provide insights into the research questions RQI and
RQ@/. Firstly, the proposed algorithm effectively generates BTk in cooperative multi-agent
settings, surpassing traditional manual solutions. This confirms the algorithm’s potential
for generating well-performing [BTk in scenarios requiring agent collaboration.

The adaptability of the automatically created Behavior Trees, explored in Section 6.2,
addresses RQ2. The algorithm demonstrates its capability to generate flexible BTk that
can seamlessly adjust to parameter changes without re-creation. This inherent flexibility
empowers the algorithm to operate effectively in dynamic environments, where parameter
values may vary during runtime.

Section 6.3 provides insights into R()3, examining the impact of parameter changes
in reinforcement learning strategies on the performance of the generated Behavior Trees.
The experiments highlight that prioritizing winning strategies in a fixed learning episode
scenario, which reduces the overall experience gathering, results in inferior behavior
tree performance. However, the experiments also demonstrate the algorithm’s ability to
abstract knowledge from an autonomously trained agent using Q-Learning. These findings
offer promising prospects for future applications, such as debugging tabular reinforcement
learning methods by generating behavior trees from them.

Finally, the experiments show that the proposed algorithm can successfully synthes-
ize well-performing Behavior Trees using a partial reward table, implying the potential
for the fully autonomous creation of behavior trees through the proposed algorithm.

The results confirm the proposed algorithm’s effectiveness, adaptability, and poten-

tial in generating high-quality Behavior Trees in various settings, including cooperative
multi-agent scenarios and dynamic environments.
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7. Conclusion and Future Work

This chapter concludes the work presented in this thesis. We further discuss the limitations
of our approach and possible future work and extensions.

7.1. Conclusion

The work presented in this thesis offers a novel and effective approach to synthesizing
behavior trees for Non-Player-Character (NPC) control in video game-like settings. By
leveraging the experiences gained from autonomous agents in a multi-agent reinforcement
learning environment, our algorithm addresses the challenges associated with the manual
creation of behavior trees. This approach proves to be a promising solution for devel-
oping intelligent NPC behaviors that can adapt to dynamic environments and exhibit
cooperative interactions.

The motivation behind utilizing behavior trees for NPC control lies in their ability
to provide a hierarchical structure that captures complex decision-making processes.
However, the manual creation of behavior trees is a labor-intensive task that requires
expert knowledge and significant effort. Our research tackles this challenge by proposing
an automatic behavior tree generation algorithm that leverages the knowledge acquired
through Q-Learning.

The core of our algorithm involves processing the Max-Q-Table obtained from the Q-
Learning process. We distill the knowledge into a reduced representation known as the
Max-Q-Table by identifying the actions with the highest Q-Values for each visited state
during the learning phase. From this table, we generate atomic nodes consisting of task
and task-condition pairs. These atomic nodes are then organized into sub-trees based on
shared guards and assembled into a final behavior tree using task priority selection and
selector nodes.

To evaluate the effectiveness of our automatic behavior tree generation algorithm, we
conducted experiments in a Capture-The-Flag game scenario. In this game, two teams of
two players per team aim to score as many points as possible within a specific time frame.
The results of our experiments validate the capabilities of the algorithm. We observed that
the algorithm successfully creates Behavior Trees automatically, reducing the manual labor
required for their development. Furthermore, the automatically generated Behavior Trees
demonstrated comparable performance to manually designed trees, even when operating
within constraints not encountered during the learning phase of the reinforcement learning
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agents. Additionally, our algorithm showcases its applicability in multi-agent settings,
where it can generate distinct yet cooperative Behavior Trees.

By automating the synthesis of behavior trees and enabling their adaptability to dynamic
environments, our research contributes to the field of NPC control in video games. It offers
a promising avenue for efficiently creating intelligent and cooperative NPC behaviors,
reducing the burden of manual tree construction, and facilitating the development of
interactive and immersive gaming experiences.

7.2. Limitation and Future Work

The algorithm proposed in this work utilizes a tabular reinforcement learning method
known to suffer when a large state-action space is used. We, therefore, relied on a method
of state discretization due to runtime- and memory concerns, as well as the inability of
tabular reinforcement learning methods to be effective with large spaces. To alleviate this,
we further focussed on a simple testing setup for the proposed algorithm, which limits
the number of actions an agent can take and the possible states an agent can be in.

A future extension might consider other machine-learning approaches to autonomously
synthesize behavior trees to allow for a larger state-action space that does not need to be
categorized into a smaller subset of discrete states. We also do not consider an upper
bound of states and actions during development. An interesting future direction of this
work could explore the viability of larger game scenarios.

Behavior trees these days provide a large set of leaf and non-leaf nodes that can re-
place subtrees with powerful expressions and provide additional mechanisms increasing a
behavior tree’s versatility. Additionally, as discussed, the execution model of behavior trees
has largely shifted and no longer utilizes a tick-driven execution model. Instead, an event-
based system is often integrated into a behavior tree’s blackboard. Our algorithm uses
only a small subset of pre-defined internal nodes and a simple execution model. A future
extension of our work might consider an automatic creation approach that generates these
“Second Generation” behavior trees that use event-based systems and more complex nodes.

Finally, we have not looked at the performance of the exported behavior trees against

human opponents. Adding this component to future iterations could provide a helpful
and necessary step to allow the adoption of the algorithm in the video game industry.
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Figure A.1.: Class diagram of the application and its usage of the Al controller libraries
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Figure A.2.: Activity Diagram of the Learning Phase
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Figure A.3.: Second BT created from experiences gained competing against the static
team
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Team RL Score | Team Static Score
count 30 30
mean 29.233 22.6
std 3.748 4.32
min 19 16
50% 30 22
max 36 31
(a) Table of Figure
Team BT Score | Team Static Score
count 300 300
mean 40.977 36.757
std 2.354 2.999
min 34 27
50% 41 37
max 480 45
(b) Table of Figure

Table A.1.: Score summary of training and BT generation against static team.

Team RL Score | Team Static Score
count 30 330
mean 35.067 26.233
std 3.956 4.360
min 29 16
50% 35 27
max 45 35
(a) Table of Figure
Team BT Score | Team Static Score
count 300 300
mean 37.373 35.557
std 2.626 2.835
min 29 29
50% 37 36
max 48 42
(b) Table of Figure

Table A.2.: Score summary of pure reinforcement learning opponents and generated BT.
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