
Bachelor Thesis
AI-Driven Game Development with Gemini 2.5 Pro

Can Prompting Alone Lead to a Fully Playable Game?

Author

Elena Popp

angestrebter akademischer Grad / aspired academic degree

Bachelor of Science (BSc)

Wien, 2025 / Vienna, 2025

Studienkennzahl lt. Studienblatt /
Studyprogramm id according to studysheet : UA 033 521

Fachrichtung / Specialisation: Informatik – Medieninformatik

Betreuer / Supervisor: Univ.-Prof. Dipl.-Ing.
Dr. Helmut Hlavacs

Abstract

The rapid advancement of Large Language Models (LLMs) raises fundamental questions about the
limits of AI in software development. This thesis investigates whether a complete and playable
game can be developed using only natural language prompts with an advanced LLM, Gemini 2.5
Pro. To explore this, the study compares two opposing development methodologies without the use
of a traditional game engine.

The first method, a top-down "Big Prompt" approach, attempted to generate the entire game from
a single, comprehensive instruction. This approach failed, as the AI was unable to generate required
game assets and produced a cascade of fundamental code errors. Resolving these errors required
extensive manual intervention and further prompting, which defeated the initial hypothesis of a
single-step, autonomous generation process and resulted in a non-playable prototype.

The second method, a bottom-up iterative approach, broke the development down into 585 small,
manageable tasks. This strategy proved highly successful, leading to a fully functional and playable
3D brick-building game. A quantitative analysis of this process showed that the AI’s performance
is task-dependent: it excels at generating code for common, well-documented problems like user
interfaces, but struggles with novel, project-specific logic that requires detailed, step-by-step expla-
nation.

The study concludes that creating a playable game with prompts alone is possible, but only through
a structured, iterative process. This positions the AI not as an autonomous developer, but as a
powerful co-pilot that requires skilled, step-by-step guidance from a human expert.

i

Kurzfassung

Die rasante Weiterentwicklung von großen Sprachmodellen (LLMs) wirft grundlegende Fragen
zu ihrer praktischen Anwendung in der Softwareentwicklung auf. Diese Bachelorarbeit unter-
sucht, ob ein vollständiges und spielbares Spiel ausschließlich durch natürlichsprachige Anweisungen
(Prompts) mit einer fortschrittlichen LLM, Gemini 2.5 Pro, entwickelt werden kann. Um dies zu
untersuchen, vergleicht die Studie zwei gegensätzliche Entwicklungsmethoden ohne den Einsatz
einer traditionellen Game-Engine.

Die erste Methode, ein Top-Down-"Big Prompt"-Ansatz, versuchte, das gesamte Spiel aus einer
einzigen, umfassenden Anweisung zu generieren. Dieser Ansatz scheiterte, da die KI nicht in der
Lage war, benötigte Spiel-Assets zu erstellen und eine Kaskade von grundlegenden Code-Fehlern
produzierte. Die Behebung dieser Fehler erforderte erhebliche manuelle Eingriffe und weitere
Prompts, was die ursprüngliche Hypothese einer autonomen, einstufigen Generierung widerlegte
und zu einem nicht spielbaren Prototyp führte.

Die zweite Methode, ein iterativer Bottom-Up-Ansatz, zerlegte die Entwicklung in 585 kleine, hand-
habbare Aufgaben. Diese Strategie erwies sich als äußerst erfolgreich und führte zu einem voll funk-
tionsfähigen und spielbaren 3D-Bauspiel. Eine quantitative Analyse dieses Prozesses zeigte, dass
die Leistung der KI aufgabenabhängig ist: Sie brilliert bei der Erstellung von Code für gängige,
gut dokumentierte Probleme wie Benutzeroberflächen, hat aber Schwierigkeiten mit neuartiger,
projektspezifischer Logik, die eine detaillierte, schrittweise Erklärung erfordert.

Die Arbeit kommt zu dem Schluss, dass die Erstellung eines spielbaren Spiels allein durch Prompts
möglich ist, aber nur mittels eines strukturierten, iterativen Prozesses. Dies positioniert die KI
nicht als autonomen Entwickler, sondern als leistungsstarken Co-Piloten, der eine fachkundige,
schrittweise Anleitung durch einen menschlichen Experten benötigt.

ii

Contents

List of Figures iv

1 Introduction 1

2 Related Work 3

3 Design and Main Idea 6
3.1 Game Concept and Core Objective . 6
3.2 User Experience and Interface Design . 6
3.3 Core Gameplay Mechanics and Logic . 7
3.4 Programming Language and Framework Selection . 8

4 Implementation 11
4.1 The "Big Prompt" Approach: A Top-Down Experiment 11
4.2 The Iterative Approach: A Bottom-Up Process . 16

5 Evaluation and Discussion 23
5.1 Quantitative Analysis of the Iterative Process . 23
5.2 Discussion and Method Comparison . 27
5.3 Limitations of the Study . 29

6 Conclusion and Future Work 30

A The "Big Prompt" Used in the Experiment 31

iii

List of Figures

3.1 Conceptual design of the main user interface . 6
3.2 Examples of the emoji-based UI buttons, designed for universal understanding with-

out text . 7
3.3 The prompt used to select the project’s programming language 8
3.4 Gemini 2.5 Pro’s recommendation of JavaScript for the project 9
3.5 AI confirmation of JavaScript’s suitability for required asset types 10
4.1 The AI’s explicit statement on its inability to generate binary files 11
4.2 Project structure proposed by the AI for the code-only "Big Prompt" attempt 12
4.3 Initial setup and syntax errors from the "Big Prompt" approach 13
4.4 The inefficient "error-fixing loop": A runtime error (top), the AI’s flawed solution

(middle), and the resulting new error (bottom) . 14
4.5 The final state of the prototype from the "Big Prompt" approach 15
4.6 Example of a detailed prompt for a complex feature 17
4.7 The initial prompt of the iterative process for scene and camera setup 18
4.8 The visual result after the first prompt: A navigable 3D scene with a ground plane . 18
4.9 Example of a targeted prompt used for fine-tuning a feature 19
4.10 Visual comparison of the brick snapping logic before and after a targeted refinement

prompt . 19
4.11 The final, functional game resulting from the iterative approach, showcasing a com-

plex user-created structure and the full UI . 20
4.12 A snippet of the manually maintained ‘config.js‘ file 22
5.1 Distribution of the 585 prompts across the seven development categories 23
5.2 Average count of prompts and errors per day during the development process 24
5.3 Comparison of the total number of prompts versus the error rate for each development

category . 25
5.4 Correlation between the number of prompts per task and the resulting number of

errors per task . 26
5.5 Correlation between the number of prompts per day and the number of errors on

that day . 27

iv

1 Introduction

Developing digital games is not only technically challenging but also creatively demanding, espe-
cially for beginners. Programming languages, design, and the use of specific tools are not easy to
learn and require significant effort and expertise.

However, in recent years, the rapid development of artificial intelligence and large language models
(LLMs) has begun to ease some of these challenges by supporting developers in both programming
and learning processes. On November 30, 2022, OpenAI released the first version of ChatGPT
for end users, and since then, the range of AI tools available on the market has expanded rapidly
[1]. In response, Google released Gemini 1.0 on December 6, 2023 [2]. The most powerful version
currently available is Gemini 2.5 Pro 1 [3].

These large language models enable users to solve tasks using natural language input. Whether it’s
research, image generation, or code generation, the possibilities seem nearly limitless [4]. These new
opportunities raise fundamental questions about the practical limits of AI in software creation. This
thesis therefore investigates whether a complete and playable game can be created using exclusively
natural language prompts with a large language model like Gemini 2.5 Pro. To isolate the direct
capabilities of the model, game engines like Unity or Godot are deliberately excluded.

To explore this, the study compares two opposing development methodologies. The core of the
investigation lies in answering which prompting strategy is more effective: a "top-down" approach
using a single, comprehensive "Big Prompt," or a "bottom-up" iterative process. The first approach
tests the AI’s ability to manage a large, complex task autonomously, while the second positions
the AI as a co-pilot in a structured, step-by-step workflow. The goal is to evaluate these methods
based on the development process, the quality and functionality of the generated code, and the
final playability of the game. A key aspect of this evaluation also includes assessing the model’s
capability to generate all required game assets, such as images and sounds, a critical component
for a truly automated development process.

This thesis investigates a relatively new application area of artificial intelligence and aims to clar-
ify what users can realistically expect when using prompt-based development for games. It also
identifies current limitations and highlights where human expertise is still essential.

To answer these questions, this thesis is structured as follows. Chapter 2 provides an overview
of the current state of research on LLMs in game development and prompt-based engineering.
Chapter 3 details the game concept and the specific design requirements that served as the basis

1As of April 2025

1

for the experiment. Chapter 4 documents the implementation process and the outcomes of both
the "Big Prompt" and the iterative development approaches. Subsequently, Chapter 5 presents
a quantitative analysis of the successful iterative process and discusses the comparative findings.
Finally, Chapter 6 concludes the thesis by summarizing the key insights and providing an outlook
on future work.

2

2 Related Work

The integration of Large Language Models (LLMs) into game development is a rapidly advancing
field promising to reshape traditional workflows [5]. To contextualize the experiment of this thesis,
this chapter reviews the current state of research at the intersection of AI and game creation. The
evolution of LLMs has unlocked new possibilities for prompt-based development, a paradigm where
natural language commands drive creation processes [4]. This chapter first provides an overview
of how LLMs are currently applied in the industry and then focuses on the specific discipline of
prompt-based development, outlining established strategies and the inherent challenges that directly
motivate the experimental design of this work.

LLMs are unlocking new creative and technical territories for game mechanics, interactive content,
and storytelling [6], [7]. Industry surveys confirm this trend: a large percentage of studios already
rely on AI technologies and intend to expand their use, with many reporting significant productivity
gains, for instance, 39% of studios report productivity increases of at least 20%, and 25% cite
comparable cost savings [8], [9]. The support for game creation through LLMs manifests in two
broad ways: in-game, where they can act as interactive characters to foster immersive play, and out-
of-game, where they aid in design concepts, code generation, and content creation [10]. This rise of
LLMs has initiated in what many researchers term "Video Game Development 3.0" [11], where the
developer’s role shifts from pure creation to one of curation and refinement of AI-generated content.
This approach is crucial, as the collaboration between human expertise and AI capabilities defines
the current state of AI-driven development [12], [13].

In graphics and animation, AI tools are increasingly used to enhance visual quality, from creating
realistic character animations to procedurally generating terrain and improving lighting effects
[14]. For storytelling and creative content, AI speeds up tasks such as level design and quest
scripting, which is particularly beneficial for narrative-driven games [6]. A notable example is
Game Retheming, where LLMs generate new game worlds and characters based on a high-level
theme [10]. Further studies, such as the CrawLLM study, illustrate how an LLM can function as
a central coordinator in the development process, orchestrating extensive portions of a game from
a single theme [15]. However, this potential comes with significant challenges. A primary concern
is "hallucinations," where LLMs generate false or illogical information. A particularly risky sub-
category, "Package Hallucinations," involves the invention of non-existent software libraries, posing
a security risk [16]–[18]. Other challenges include biases from training data, technical constraints
like poor long-term planning, and legal risks surrounding content ownership [10], [19], [20].

The discipline of prompt-based game development focuses on transforming natural language
prompts into game elements [5], [10]. This approach enables several key applications: players
can dynamically shape text-based games, prompts can generate new design content like dialogue

3

or items, or even introduce and adjust gameplay mechanics effortlessly. The reliability of these
outcomes depends heavily on the prompting strategies. In the literature, a key distinction is made
between single-task and multitask prompts, a topic that is fundamental to understanding the
effectiveness of different development workflows and is central to this thesis [21]. Research has
analyzed various strategies to improve output quality. These include the Base Prompt, which offers
a basic instruction without any additional context, Documentation Prompting, which enriches the
prompt with relevant technical documentation, In-Context Learning, which uses a few task-related
examples to guide the model, and a Combined Approach, which mixes both documentation
and in-context examples. It has been shown that providing examples (In-Context Learning)
generally yields the highest functional correctness, while including documentation improves the
verifiability of the generated code [22]. The practice of carefully crafting prompts, known as
prompt engineering, is crucial, as even minor changes can significantly impact the output [21], [23].

Structured approaches like Chain-of-Thought (CoT) or frameworks like the ADIHQ guideline2

aim to improve logical reasoning by breaking down problems into smaller steps [25]. The most
effective approach, however, often proves to be an iterative, dialogue-based refinement where the
user provides feedback [26]. Empirical assessments confirm that this conversational prompting
significantly improves performance over fully automated approaches [23]. Advanced techniques like
Retrieval-Augmented Generation (RAG) and Self-Refinement aim to automate this process [17],
[25]. Moreover, the performance of LLMs can be substantially improved through targeted training
techniques like Proximal Policy Optimization (PPO) or innovative approaches such as Prompt-
FDC, an augmented prompting technique designed to generate code that adheres to safety-critical
industry standards [22], [27].

Despite these advanced techniques, the quality of AI-generated code often requires human interven-
tion to correct errors and ensure it is fully functional and secure [28], [29]. LLMs tend to produce
systemic errors, which researchers have systematically categorized and studied. For example, AI-
specific errors, often called "hallucinations," are classified into types such as "Intent Conflicting,"
where the code deviates from user requirements, and "Knowledge Conflicting," where it misuses
APIs [18], [30]. The security of this code is a major concern, as models can produce insecure code
in a high percentage of security-critical tasks. Research shows, however, that specific prompting
techniques, such as adding a security-focused prefix or using Recursive Criticism and Improvement
(RCI), can significantly reduce the creation of vulnerabilities [31]. This highlights that while both
human and LLM-generated code contain flaws, their nature and severity can differ [32]. The au-
tomated assessment of code correctness is therefore critical, with tools using symbolic execution

2The ADIHQ framework, an acronym for the Spanish Análisis, Diseño, Implementación, Hacking y Quality
Assurance (Analysis, Design, Implementation, Hacking, and Quality Assurance), outlines a structured prompting
process. The authors conceptually describe these steps as Analyze, Design, Implement, Handle (corresponding to
’Hacking’), and Quality [24].

4

showing promise for a more detailed evaluation than simple similarity metrics [33].

In game development, these principles are used to create entire game experiences. LLMs have
revitalized the field of Procedural Content Generation (PCG), allowing for the creation of game
elements like quests, characters, and game mechanics through natural language [34]. The ChatPCG
framework even demonstrates how LLMs can design reward functions for other AI agents [35].
However, creating binary assets such as images and 3D models is a separate technical challenge that
requires different kinds of models. Research shows that the primary tools for visual asset creation
are specialized architectures like Generative Adversarial Networks (GANs) and Diffusion Models
[14]. This distinction highlights a central finding of this thesis: a fully prompt-driven development
pipeline requires combining different, specialized tools. A post-game jam study further shows the
practical difficulties, finding that AI-generated assets are often seen as lower quality and hard to
customize [36]. The main challenge is coordinating these different tools, where an LLM could act
as a central manager [15]. Finally, this entire process must also handle complex ethical issues, from
addressing social biases in generated code [20] to the challenges of building and evaluating serious
games with AI [19]. The development of AI-driven tools must therefore consider not just technical
feasibility but also the vital human factors of trust and usability, especially in safety-critical domains
[27], [37].

5

3 Design and Main Idea

3.1 Game Concept and Core Objective

To effectively test the capabilities of AI-driven code generation, a suitable project was required.
The chosen concept for this thesis is a 3D brick-building game titled "Build Your Brick House,"
where the main goal for a player is to construct virtual structures with bricks, similar to classic
toy sets. This game concept was selected for its variety of technical challenges that are well-suited
for evaluating an LLM’s ability to write functional code. Specifically, these challenges included the
creation of a 3D world with a movable camera, the management of grid-based brick connections,
and the implementation of a user interface for selecting different brick shapes and colours. A crucial
rule for the experiment was to build everything from scratch, without relying on a traditional game
engine like Unity or Godot. This "pure" approach ensures that the evaluation focuses exclusively
on the code generation skills of the LLM itself.

3.2 User Experience and Interface Design

A key focus of the game design was to create an intuitive and universally accessible user experience,
intended to run on multiple platforms, including Windows, macOS, and Android tablets. The
controls were designed to be straightforward, adapted for both mouse-based PC interaction and
touch input on tablets, targeting a broad audience from ages 6 to 99 with no prior experience
required.

Figure 3.1: Conceptual design of the main user interface

6

To support this goal, the user interface (UI) was designed to be visually clear and simple, employ-
ing a consistent color scheme based on blue and yellow tones. The experience begins with a start
screen that features a single ’start’ button, leading directly into the main game. As conceptualized
in Figure 3.1, the main game UI provides distinct areas for brick selection in a horizontal, scrol-
lable menu and color customization via a color wheel. A significant design choice was the use of
internationally recognized icons and emojis for control elements like save, reset, and undo, as shown
in Figure 3.2. This text-free approach makes the game immediately understandable for a global
audience, including children who may not yet be able to read.

(a) Save button (b) Undo button (c) Reset button

Figure 3.2: Examples of the emoji-based UI buttons, designed for universal understanding without
text

3.3 Core Gameplay Mechanics and Logic

The core of the game revolves around the interaction with and placement of virtual bricks. Players
can choose from a library of classic brick shapes and special parts, customizing the color of each brick
via a color wheel or direct hex code input. Bricks are placed onto a base plate via drag-and-drop
and can be subsequently repositioned.

To ensure a realistic and satisfying building experience, a clear set of rules for connection logic
and stability was defined. A fundamental requirement is stackability, meaning bricks can only
be placed on a grid-based system, preventing floating structures. This is supported by a snapping
mechanism that automatically aligns bricks to valid positions. To simulate a basic form of structural
dependency, a rule of structural integrity was established: a supporting brick cannot be removed
if other bricks are resting upon it. As an advanced stress-test for the AI, the design included the
optional goal of structural collapse, where unstable constructions could topple over.

7

The gameplay is further supported by several technical features. The in-game lighting is designed
to resemble natural sunlight, while the audio design includes calm background music and distinct
sound effects for player actions. Finally, a save function automatically preserves progress, allowing
the player to seamlessly continue their project upon restarting.

Fulfilling these design goals also required specifying a range of digital assets essential for the final
product. The core 3D objects included various brick shapes and a base plate. For the user interface,
graphical UI icons were also required. The auditory design encompassed calm background music,
a click sound for player interactions, and a distinct sound for brick removal. Finally, the design
called for a background image for the start screen, featuring scattered, colorful bricks.

3.4 Programming Language and Framework Selection

Choosing the right programming language and framework was a critical first step. To maintain
the integrity of the experiment and ensure the process was strictly AI-driven, this decision was
delegated to the Gemini 2.5 Pro model. The AI was given a detailed prompt, as shown in Figure
3.3, which outlined the project’s core requirements: a standalone 3D game built without a full
game engine, cross-platform compatibility, and the use of a language well-suited for AI-assisted
development.

Prompt to Gemini 2.5 Pro

I want to create a simple standalone 3D game without using any game engine
like Unity or Godot. However, using lightweight frameworks and libraries is
allowed.

The game should run on Windows, macOS, and Android tablets.

Please recommend two programming languages (e.g., JavaScript, Python, C++,
or GDScript) that work well for AI- assisted development via prompting,
especially with models like Gemini. The languages should be suitable for
building such games using only frameworks (not full game engines), and the
code should be easy to generate, understand, and modify through natural
language prompts. The development workflow should also be compatible with
Visual Studio Code on a MacBook Air.

Figure 3.3: The prompt used to select the project’s programming language

8

The model’s analysis presented two main options: JavaScript with web technologies like Three.js, or
Python with multimedia libraries. It highlighted that JavaScript’s ecosystem offered more mature
frameworks for 3D graphics and a smoother path to cross-platform deployment. Based on this
reasoning, the AI’s final conclusion, shown in Figure 3.4, was a clear recommendation for JavaScript.

Reply from Gemini 2.5 Pro

Conclusion:

Both JavaScript (leveraging web technologies like WebGL/WebGPU via
Three.js/Babylon.js and packaging tools) and Python (using libraries like
Pyglet for desktop and Kivy for cross-platform including Android) are
excellent choices that meet your requirements.

• Choose JavaScript if you prefer the web technology stack and want the
potentially smoothest path to cross-platform deployment (especially
web-to-mobile). The 3D frameworks are very mature.

• Choose Python if you prefer its syntax and ecosystem, value its
exceptional AI-friendliness for rapid iteration, and are comfortable
using a framework like Kivy for Android deployment.

Both languages will work well with Gemini for code generation/understanding
and are well-supported in VS Code on your MacBook Air.

Figure 3.4: Gemini 2.5 Pro’s recommendation of JavaScript for the project

To verify this choice, a follow-up prompt confirmed JavaScript’s suitability for the specific asset
types required (Figure 3.5). Consequently, this AI-driven decision was crucial for eliminating author
bias and ensuring the study’s objectivity.

9

Reply from Gemini 2.5 Pro

Overall Recommendation for this specific project:

JavaScript (with Three.js or Babylon.js)

Reasons:
1. Superior GLB Handling: The gITF/GLB ecosystem is most mature and

seamlessly integrated within web-based 3D libraries like Three.js and
Babylon.js. This is a key asset type for you.

2. Web Audio API: A powerful, standard API for all your audio needs.
3. Flexible UI Options: You can choose between simple HTML/CSS overlays

(very easy for buttons) or more integrated in-canvas UI systems offered
by the 3D libraries, both supporting PNGs.

4. AI-Assisted Development: The sheer volume of examples, tutorials, and
open-source projects using Three.js/Babylon.js with GLB models, audio,
and UI elements means Gemini will have a vast dataset to draw from for
generating accurate and useful code snippets. Prompting for "load a GLB
model in Three.js and make it clickable" or "play a WAV sound on button
press using Web Audio API" is likely to yield excellent results.

5. Cross-Platform Consistency: The development workflow using web
technologies packaged with Electron (Desktop) and Cordova/Capacitor
(Android) provides a consistent codebase and environment. The underlying
browser engines (Chromium) in these wrappers have excellent support for
all your specified asset types.

Figure 3.5: AI confirmation of JavaScript’s suitability for required asset types

10

4 Implementation

This chapter details the implementation phase of the project, documenting the two distinct prompt-
ing methodologies used to generate the game code. The first approach, the ’Big Prompt’, attempted
to generate the entire game from a single, comprehensive instruction set based on the design re-
quirements from Chapter 3. The second, the ’Iterative Approach’, built the game step-by-step
through a series of targeted prompts.

4.1 The "Big Prompt" Approach: A Top-Down Experiment

The first method tested was a "top-down" approach, using one single, large, and comprehensive
prompt. This experiment was designed to test the ultimate promise of advanced LLMs: the ability
to act as an autonomous developer. The hypothesis was that the model, given all design require-
ments at once, could create a complete and playable game without any manual help or step-by-step
guidance. The AI was provided with the full game design specification (see Appendix A), with the
expectation of receiving a "copy, paste, and play" solution.

However, this initial strategy immediately failed due to a fundamental limitation: the AI’s inability
to generate binary files. When prompted for the complete game including assets, Gemini 2.5 Pro
explicitly stated its constraint, as shown in Figure 4.1.

Reply from Gemini 2.5 Pro

...due to the limitations of this text-based format, I cannot directly
provide binary files like images and sounds.

Figure 4.1: The AI’s explicit statement on its inability to generate binary files

This outcome immediately revealed a critical flaw in the strategy. As the model could not produce
the required binary files (.png, .mp3, or .glb), a complete, asset-inclusive game generation was
impossible. This first result already confirmed that a fully automated development pipeline, a
key aspect of the initial research question, cannot be achieved with a purely text-based model.
Consequently, the strategy was adjusted to request only the source code, shifting the focus to the
AI’s programming capabilities alone.

11

Reply from Gemini 2.5 Pro

Project Structure: build-your-brick-house/

|– assets/
| |– (Optional: textures, models if not procedural)
|– css/
| |– style.css
|– js/
| |– vendor/
| | |– three.module.min.js (Three.js library)
| | |– cannon-es.min.js (Cannon-es physics library)
| | |– OrbitControls.js (Three.js OrbitControls)
| |– BrickUtils.js
| |– Config.js
| |– InputHandler.js
| |– Physics.js
| |– SaveLoad.js
| |– UI.js
| |– main.js
|– index.html
|– README.md (Instructions will go here conceptually)

Figure 4.2: Project structure proposed by the AI for the code-only "Big Prompt" attempt

Initially, the AI’s proposal of a project structure seemed reasonable (Figure 4.2). This initial
promise, however, quickly dissolved as the generated code proved to be fundamentally flawed.
The development process immediately devolved into a cascade of errors, starting with setup and
syntax issues like missing library files and invalid module imports, which rendered the project
non-functional from the start (Figure 4.3).

12

Console Error

Failed to load resource:
the server responded with a status of 404 (Not Found) cannon-es.min.js:1
Uncaught SyntaxError:

Cannot use import statement outside a module three.module.min.js:6 Refused to

execute script from ’http://.../cannon-es.min.js’
because its MIME type (’text/html’) is not executable,
and strict MIME type checking is enabled. index.html:1 Uncaught SyntaxError:

Cannot use import statement outside a module OrbitControls.js:1 Uncaught

ReferenceError:
THREE is not defined InputHandler.js:7

at InputHandler.js:7:17
at InputHandler.js:389:3

...

Figure 4.3: Initial setup and syntax errors from the "Big Prompt" approach

Even after these initial problems were manually fixed, deeper logical flaws appeared, which started
an inefficient "error-fixing loop." As documented in Figure 4.4, reporting a runtime error to the AI
often resulted in a suggested fix that was also flawed, immediately creating a new, different error.
This frustrating cycle was a practical demonstration of the challenges discussed in Chapter 2, such
as "hallucinations" and a lack of long-term planning. It showed the AI’s inability to understand the
entire codebase at once, which made a systematic debugging process impossible and highlighted
the severe limitations of this approach.

13

Prompt to Gemini 2.5 Pro

I have now corrected the import and dependency errors myself. Now there is
the following error: Physics.js:83 Uncaught TypeError: world.overlapTest is

not a function
at Object.isPositionAboveOccupied (Physics.js:83:30)
at checkCanMove (InputHandler.js:204:25)
at handlePointerDownLogic (InputHandler.js:158:29)
at HTMLCanvasElement.onPointerDown (InputHandler.js:141:13)

Reply from Gemini 2.5 Pro

3. Delete or Comment Out the overlapTest Code: Find the block of code that
creates a checkBody and calls world.overlapTest. It looks like this:

// Inside isPositionAboveOccupied function:
// START OF BLOCK TO DELETE OR COMMENT OUT
const halfExtents = new CANNON.Vec3(tolerance, tolerance, tolerance);
const shape = new CANNON.Box(halfExtents);
const checkBody = new CANNON.Body({ mass: 0 }); // Static body
checkBody.addShape(shape);
checkBody.position.copy(checkPosition);
// This is the problematic line and related setup:
const result = world.overlapTest(checkBody);
// END OF BLOCK TO DELETE OR COMMENT OUT

Console Error

Uncaught ReferenceError: rayStart is not defined Physics.js:92
at Object.isPositionAboveOccupied (Physics.js:92:9)
at checkCanMove (InputHandler.js:204:25)

Figure 4.4: The inefficient "error-fixing loop": A runtime error (top), the AI’s flawed solution
(middle), and the resulting new error (bottom)

14

After numerous debugging cycles, which required significant manual intervention and further
prompting, the "Big Prompt" approach eventually produced an application that could be started.
However, this executable version was a fundamentally broken and unplayable prototype that failed
to meet the core functional requirements of the game design, as shown in Figure 4.5.

While the application could render a basic scene, the essential gameplay mechanics were chaotic
and unpredictable. The brick placement system, for example, did not function correctly; there was
no reliable grid snapping, and attempts to stack bricks resulted in erratic behaviour, such as bricks
flying apart or collapsing without reason. This made it impossible to construct any meaningful
structure. Furthermore, the user interface was rudimentary, consisting of simple text elements
instead of the designed graphical buttons.

In conclusion, the "Big Prompt" methodology failed entirely. It did not generate a "copy, paste, and
play" solution but rather non-functional code that demanded an extensive and inefficient debugging
process just to become executable. Even after this effort, the final prototype did not meet the
design requirements and was functionally useless. This outcome provides a clear answer to one
part of the thesis’s central question: the "Big Prompt" strategy is not a viable path to creating a
playable game.

Figure 4.5: The final state of the prototype from the "Big Prompt" approach

15

4.2 The Iterative Approach: A Bottom-Up Process

The second method tested was an iterative, bottom-up approach. This was the direct opposite of
the "Big Prompt" methodology. The idea here was to break down the large task of creating a game
into many small, manageable steps. This should allow the LLM to be guided more effectively and,
in turn, produce better and more functional code. Instead of giving the AI the entire game design
at once, the development started with a single, simple feature. New features were then added one
by one. The game design document from Chapter 3 was used as a general guide or roadmap, not
as a strict set of instructions.

Each new feature was developed using a simple, repeated cycle. This workflow is central to the
success of the iterative method: A short, clear prompt was written for a single, well-defined task, for
example, "Create a movable camera" or "Make the bricks snap to the grid." The LLM then created a
piece of code specifically for that one task. This new code was immediately added to the project and
tested to see if it worked as expected. If an error occurred or the functionality was not perfect, this
initiated a debugging sub-cycle. The error message or a description of the bug was given back to
the AI in a new prompt (e.g., "The code throws a ‘TypeError‘ on line 5" or "The bricks are snapping
with an offset of 0.5"). The AI’s suggested solution was then integrated and tested again. This
loop was repeated until the feature worked correctly. The prompts themselves were intentionally
kept short and precise. For more complex tasks involving mathematical calculations, such as the
advanced placement logic, the prompts included concrete explanations and detailed examples to
guide the AI, as shown in Figure 4.6. An interesting observation during the process was that the
language of the prompt (German, English, or even a mix of both within a single prompt) had
no discernible impact on the quality of the generated code. The AI handled multilingual input
seamlessly.

16

Prompt to Gemini 2.5 Pro

It’s still not working as intended. When I press the spacebar, the block
I’m holding should jump to the next free Y level below its current position,
but only if there is enough vertical space for the block to fit.

Important: A Y level is only considered valid if:

* There is enough space between the objects above and below it to fit the
block

* Specifically: the space must be at least 2 * (block height + 0.2)

Example:

* I’m holding a block that is automatically placed at Y = 4
* If there is nothing at Y = 2, then the first spacebar press should move

it to Y = 2
* If Y = 0 is empty, the next spacebar press should move it to Y = 0
* BUT: If there is already a block at Y = 0, then the next spacebar press

should move it to Y = 1 (if that space is valid and fits)

Figure 4.6: Example of a detailed prompt for a complex feature

The development process was executed in a series of logical steps, starting with the most funda-
mental components and progressively adding complexity. The initial step was to establish the basic
3D world. A simple, focused prompt was used to generate the base code for the scene. As shown
in Figure 4.7, the AI was tasked with creating a ground plane, setting up basic lighting, and im-
plementing a fully movable camera with controls for zooming, rotating, and panning. This ensured
that a functional, navigable environment existed before any gameplay logic was introduced. The AI
successfully generated the base code for this initial request. The result was a simple but functional
3D scene with a ground plane and a fully controllable camera, as shown in Figure 4.8. This created
a solid foundation for all subsequent development steps.

17

Prompt to Gemini 2.5 Pro

Please provide the base code for a 3D game in JavaScript. The game should
run on Windows, macOS, and Android tablets. For now, it should just display
a ground plane when opened.

* The camera must be movable:
* Zoom with the mouse wheel or pinch-zoom on touch (Android tablet)
* Rotate the camera by holding the right mouse button and dragging

(or two-finger rotate on touch devices)

Figure 4.7: The initial prompt of the iterative process for scene and camera setup

Figure 4.8: The visual result after the first prompt: A navigable 3D scene with a ground plane

With the scene in place, the development focused on the core gameplay mechanics. This complex
stage was managed by breaking it down into thematic categories and granular sub-tasks. This
problem-driven nature of the workflow allowed specific bugs, like early issues with a "Jitter Base
Plate", to be isolated and addressed with targeted prompts before building more complex features
like "Brick Placement on Grid".

18

A concrete example of this refinement cycle was the implementation of the grid-snapping mecha-
nism. The initial AI-generated code for this often resulted in a slight alignment offset. The specific
follow-up prompt used to correct this is shown in Figure 4.9.

Prompt to Gemini 2.5 Pro

It’s almost correct now, but the block is offset by 0.5 on both the X and
Z axis. Please fix this alignment issue so that the snapping is perfectly
centered.

Figure 4.9: Example of a targeted prompt used for fine-tuning a feature

This example highlights a core strength of the iterative method: a problem could be isolated,
described precisely, and corrected with a targeted follow-up prompt. The visual result of such a
refinement cycle is shown in Figure 4.10. This fine-grained control was essential for achieving the
required precision in the placement logic.

(a) Placement with incorrect offset (b) Corrected placement after refinement

Figure 4.10: Visual comparison of the brick snapping logic before and after a targeted refinement
prompt

During the implementation of the stacking logic, it became evident that fulfilling the "Structural
Collapse" requirement from the design document with a full physics engine was impractical. A
conscious design decision was therefore made to adapt the requirements. Instead of a complex

19

physics simulation, the core principle of stability was implemented through a simpler, rule-based
system. For example, a targeted prompt was used to enforce the rule that a brick cannot be removed
if another brick is resting upon it. This pragmatic adjustment highlights a key advantage of the
iterative approach: the ability to identify implementation issues and adapt the design accordingly,
ensuring a robust and functional final product. The user interface was also constructed element
by element, following the same iterative principle. In stark contrast to the text-only UI from the
"Big Prompt" attempt, this approach focused on creating a graphical and interactive interface as
specified in the design requirements. Since the AI could not generate 3D models, the required brick
assets (in ‘.glb‘ format) were created manually. Subsequently, a series of targeted prompts was used
to instruct the AI on how to load these assets and display them in a scrollable side menu. This
process resulted in a visual and intuitive brick selection system.

Figure 4.11: The final, functional game resulting from the iterative approach, showcasing a complex
user-created structure and the full UI

The iterative, bottom-up methodology proved to be highly successful. This method resulted in a
fully playable and feature-complete game that met the core requirements outlined in the design
document. The final state of the application, featuring a complex user-created structure and the
fully functional graphical interface, is shown in Figure 4.11. All key systems, including the 3D
environment, camera controls, core brick placement and stacking logic, and the graphical user
interface, were implemented and functional. The step-by-step process allowed for continuous testing

20

and refinement, which prevented the kind of cascading errors that plagued the top-down approach.
It is important to highlight the role of manual work in the iterative process. As established in the
"Big Prompt" experiment, the AI was unable to generate binary assets. Consequently, all required
3D models for the game’s bricks were created manually by the author using Blender. While all game
logic was AI-generated, a central configuration file (‘config.js‘) was also maintained by hand. This
file, shown in Figure 4.12, served as a central repository for static values, including the file paths
to these self-made 3D models, as well as other gameplay parameters. This separation of logic and
configuration allowed for easy adjustments without altering the AI-generated code and represents
the only part of the codebase not created through prompting. In conclusion, this demonstrates that
for complex software development tasks, guiding an LLM through a series of small, well-defined
prompts is a far more robust and effective strategy than providing a single, monolithic instruction
set.

21

Figure 4.12: A snippet of the manually maintained ‘config.js‘ file
22

5 Evaluation and Discussion

This chapter evaluates the outcomes of the two development methodologies and discusses their
implications in the context of the research questions. As documented in Chapter 4, the "Big Prompt"
approach failed to produce a playable game and resulted in a chaotic, unmanageable development
process. Consequently, a detailed quantitative analysis of this approach was not feasible. The
iterative approach, however, was successful and yielded a rich set of process data. The following
quantitative analysis therefore focuses exclusively on the iterative development process to evaluate
the effort, error rates, and complexity involved. The findings are then used to draw a comparative
conclusion between the two approaches.

5.1 Quantitative Analysis of the Iterative Process

Figure 5.1: Distribution of the 585 prompts across the seven development categories

To understand the development effort involved in the iterative approach, every prompt issued to
the AI and any resulting errors were systematically logged and categorized. This data provides the
basis for the following analysis of the development workflow. During the iterative development of
the game, a total of 585 prompts were issued to the AI. The development work was structured into
seven main thematic categories, as outlined in Chapter 4. The distribution of prompts across these

23

categories, illustrated in Figure 5.1, provides insight into where the most development effort was
concentrated. The two largest segments, User Interface (UI/UX) at 29% and Core Functionality at
24%, together account for more than half of the total prompts.

Figure 5.2: Average count of prompts and errors per day during the development process

This indicates that the primary development effort was focused on implementing the user-facing
elements and the fundamental gameplay logic. Categories like Colour Management (19%) and Brick
Interaction (12%) also required significant attention, while areas such as Placement Expansion (3%)
and System Features (5%) were less prompt-intensive. On a daily basis, the development involved an
average of 26 prompts and resulted in an average of 2.3 errors that required correction (Figure 5.2),
highlighting the constant cycle of prompting, testing, and refining that characterized the iterative
workflow.

While the overall number of prompts indicates the effort, the error rate per category reveals insights
into the AI’s reliability for different types of tasks. Figure 5.3 provides a direct comparison between

24

the sum of prompts and the corresponding error rate for each development category. A key finding
emerges from this data: there is no direct correlation between the number of prompts and the
error rate. The User Interface (UI/UX) category, which required the most prompts (169), had one
of the lowest error rates (5.33%). This suggests that the AI is highly reliable for generating code
for well-defined, albeit numerous, UI components. In contrast, categories involving more complex
logic, such as Placement Expansion (18.75% error rate) and System Features (18.52% error rate),
showed significantly higher error rates despite requiring far fewer prompts. This indicates that
while the AI can handle a large volume of simple tasks efficiently, it struggles more with tasks
that require a deeper understanding of spatial relationships, game state, or intricate logic. The
AI’s efficiency appears to be task-dependent, excelling at repetitive or straightforward requests but
showing weakness in areas demanding complex problem-solving.

Figure 5.3: Comparison of the total number of prompts versus the error rate for each development
category

25

Figure 5.4: Correlation between the number of prompts per task and the resulting number of errors
per task

To further investigate the relationship between development effort and error frequency, a correlation
analysis was performed. Figure 5.4 plots the number of errors against the number of prompts for
each of the seven development tasks. The analysis reveals a coefficient of determination (R2) of
0.6518, indicating a moderately strong positive correlation between the scope of a task and the
total number of errors encountered. However, when analyzing the process on a daily basis (Figure
5.5), a different picture emerges. The correlation between the number of prompts issued per day
and the number of errors on that day is significantly weaker, with an R2 value of only 0.3537. This
suggests that the complexity of the specific tasks being worked on appears to be a more significant
factor for error occurrence than the sheer volume of work done on any given day.

26

Figure 5.5: Correlation between the number of prompts per day and the number of errors on that
day

5.2 Discussion and Method Comparison

The results from the two experimental approaches reveal a stark contrast in effectiveness and
practicality. A direct comparison of the methodologies is summarized in Table 1. The "Big Prompt"
approach resulted in a chaotic and unpredictable development process. The lack of intermediate
steps meant there was no control over the generation process once the prompt was submitted.
Errors were often fundamental and cascaded, making debugging a circular and inefficient task. In
contrast, the iterative process was structured, measurable, and offered full control at every step.
The ability to test and refine small code snippets individually was crucial for managing complexity
and ensuring the project remained on a stable path.

The difference in the final product could not be more stark. The "Big Prompt" produced unusable,
functionally broken code that, even after significant manual intervention, did not meet the core
requirements of the game. The iterative approach, however, yielded high-quality, functional code
snippets that could be successfully integrated into a fully playable game. This demonstrates that
LLMs, in their current state, are not "black box" code generators capable of handling complex,
interconnected requirements, but rather powerful tools that excel when guided with precision.
These findings lead to clear answers to the central research questions of this thesis. This experiment

27

demonstrates that a complete, playable game can be created using only natural language prompts,
but only when employing a structured, iterative methodology. The belief that an AI can function
as an autonomous game developer from a single high-level prompt is, based on this experiment,
not supported. The iterative, step-by-step strategy is unequivocally more effective. It leverages the
AI’s strength in solving well-defined, single-task problems while keeping the human developer in
full control of the overall process, thus fulfilling the role of a powerful and controllable co-pilot.

Feature Big Prompt Approach Iterative Approach

Process Chaotic and unpredictable; lack of con-
trol.

Structured and measurable; full con-
trol at every step.

Code Quality Unusable and riddled with cascading
errors.

High-quality, functional code snippets.

Efficiency Highly inefficient due to extensive, cir-
cular debugging.

Efficient and direct path to implement-
ing features.

Result A non-playable, functionally broken
prototype.

A fully playable game meeting all core
requirements.

AI’s Role A "black box" code generator produc-
ing an unmanageable output.

A powerful and controllable tool for
step-by-step development.

Table 1: Comparison of the "Big Prompt" versus the "Iterative" approach.

These findings also shed light on the evolving role of the human developer in an AI-driven workflow.
The traditional role of the programmer, who writes code line by line, recedes into the background.
In its place, a new set of skills becomes paramount: the developer becomes an architect and a
guide for the AI. In this experiment, the primary task was no longer typing code but the art of
decomposing a complex end goal—a playable game—into hundreds of precise, logically sequenced,
and unambiguous instructions. This requires a deep understanding of the overall system, strategic
planning, and the ability to steer the AI while actively compensating for its weaknesses, such as a
lack of long-term context. Thus, the value of human expertise shifts from pure code implementation
to the domains of problem decomposition and process orchestration.

28

5.3 Limitations of the Study

This study has some limitations that are important for a correct interpretation of the results. First,
the experiment was conducted using only one AI model: Gemini 2.5 Pro. The results reflect the
capabilities of this specific model, and other Large Language Models, such as OpenAI’s GPT-4
or Meta’s Llama 3, might perform differently. Therefore, the findings of this thesis cannot be
generalized to all AI models. Second, the human factor is a limitation. Only one person authored
all prompts for the iterative approach. Since the phrasing of a prompt significantly influences the
AI’s response, another developer with a different style could experience a different development
process. The study demonstrates a successful path, but it is not the only possible one. Third, the
game genre is specific. The project was a 3D brick-building game, which requires significant logic for
placement and interaction. While the results are highly relevant for this genre, they may not apply
to other game genres, such as narrative-driven adventure games or fast-paced action games, which
have different requirements. Finally, the success of the iterative approach was critically dependent
on the quality of the prompting itself. A developer with less experience in "prompt engineering"
might have achieved less successful results. The skill of the human "pilot" is therefore a crucial
variable that was not isolated in this study and significantly impacts the outcome.

29

6 Conclusion and Future Work

This thesis explored whether a fully playable game can be developed using only natural language
prompts with an AI, comparing a single "Big Prompt" method against an iterative, step-by-step
approach. The experiment clearly demonstrated that the "Big Prompt" approach failed to produce
a viable result, while a running application could be forced after extensive manual debugging, the
game itself was broken, unplayable, and did not meet the core requirements of the design document.
The process was inefficient, chaotic, and difficult to control.

In stark contrast, the iterative, bottom-up approach proved highly successful. This method made
it possible to guide the AI effectively to build a complete and playable game that met all key design
requirements. By breaking the development down into 585 small, manageable prompts, the process
remained controlled and predictable. The analysis of this process revealed that the AI excels at
generating code for well-defined tasks like user interfaces, where it made few errors, but struggled
more with tasks requiring complex, novel logic.

In conclusion, this thesis successfully demonstrated that creating a playable game with prompts
alone is possible, but critically, only when a structured, iterative strategy is employed. The experi-
ment refutes the idea that an AI can function as an autonomous developer from a single, high-level
prompt. The findings establish that the iterative, step-by-step strategy is unequivocally more ef-
fective, positioning the AI as a powerful co-pilot that requires skilled human guidance to navigate
the creation of a complex and functional final product.

These findings open up several promising avenues for future research. A key area would be to
test if next-generation AI models, such as the upcoming Gemini 3.0, can better handle the "Big
Prompt" approach, which would be a test of their improved long-term planning skills. Furthermore,
exploring hybrid methods could yield valuable insights, for example, one could use a medium-sized
prompt to generate the basic game structure and then use the iterative method to add and refine
features. The applicability of this successful iterative method could also be tested on other types
of software projects beyond games, such as web applications or data analysis tools, to gauge its
broader utility. Finally, future work could focus on creating better tools to support the iterative
process.

30

A The "Big Prompt" Used in the Experiment

The following is the complete, unaltered text of the "Big Prompt" that was given to Gemini 2.5 Pro
in the top-down experiment.

Please create the complete source code for a game based on the following
game design (see below). The programming language should be JavaScript.

Please provide me with:

The complete game code (in one file or multiple files, as you prefer).
The file/folder names to be used for all code files.
Instructions on how to convert and start the game as a standalone version
and use it on the platforms mentioned in the game design
(no app store required).
A list of all necessary extensions for Visual Studio Code (VSCode),
including all additional settings.
The game should be executable directly after copying/downloading the
code and assets – without further configuration or changes.

Please consider the following game design when creating the game:

Game Design

Introduction

The game is called "Build Your Brick House." It is a creative 3D brick-building
game that makes classic building bricks virtually accessible. The focus is on
intuitive and simple controls, realistic physics simulation, and cross-platform
usability.

All building elements in the game — including bricks, special parts, and the base
plate — are inspired by classic studded building systems. Each piece has realistic
studs and tubes to enable accurate stacking and interlocking behaviour, just like
in real-life brick sets.

31

The parts visually and functionally resemble those well-known interlocking brick
systems. The appearance includes visible circular studs on the top and matching
holes underneath. Bricks are modular and connect securely by aligning their studs
with the underlying piece.

The overall visual style is playful and colourful, but the connection logic
should follow realistic rules: Bricks can only snap if aligned properly, and
stacking is limited by real physics and stability.

Platforms & Controls

Supported Platforms:
• Windows
• macOS
• Android Tablets

Controls:
• Mouse on PC
• Touch input on tablets

User Interface (UI)

Colour scheme:
• blue (#144a81) for the backgrounds
• yellow / white (#ffbd59, #ffde59, #ffffff) for the buttons

Game Menu:
• Save button and exit button
• Button to reset the game field (delete all bricks)
• Help button (?) with an overview of controls and key functions

(e.g., rotate, delete, select)
• Back button to undo the last action

32

Game Field & Camera

Base Plate:
• Choice between a green or grey surface

Camera:
• Freely movable around the constructed object
• Zoom buttons

Controls:
• Rotate using the right mouse button
• Rotate with a two-finger gesture (touchscreen)

Building Bricks & Interaction

Brick Selection:
• Classic brick shapes (e.g., 2x4, 2x3)
• Special bricks: roofs, doors, windows, flowers, grass,

thin/thick bricks
• Select the shape before choosing the colour

Colour Selection:
• Colour wheel or hex code input

Placement & Editing:
• Drag & drop bricks onto the plate
• Bricks can be moved by clicking (left mouse button) and dragging

Removal:
• Detach a brick from another by clicking and dragging (left mouse button)

or by long pressing and dragging (touch)
• Either move it to another location or to the trash bin

33

Control & Functionality:
• All bricks must be stackable
• The top brick must be removed first to move the one below

(realistic building method)

Physics:
• Realistic physics
• Overloaded or unevenly built structures will topple

(e.g., a leaning tower falls over)

Lighting & Graphics
Lighting should resemble natural sunlight. It should not be too bright
or reflective, so that the bricks remain clearly visible.

Save Function
The construction progress is automatically saved when closing the game. When
the game is reopened, the project is automatically loaded, allowing the player
to continue building.

Target Audience
All users interested in building with bricks. No prior knowledge is required;
the interface is simple and intuitive. Suitable for ages 6–99, if they are
familiar with using a PC or tablet.

34

References
[1] OpenAI. “Introducing ChatGPT.” (Nov. 30, 2022), [Online]. Available: https://openai.

com/index/chatgpt/ (visited on 04/06/2025).
[2] S. Pichai and D. Hassabis. “Introducing Gemini: Our largest and most capable AI model.”

(Dec. 6, 2023), [Online]. Available: https://blog.google/technology/ai/google-gemini-
ai/ (visited on 04/06/2025).

[3] K. Kavukcuoglu. “Gemini 2.5: Our most intelligent AI model.” (Mar. 25, 2025), [Online]. Avail-
able: https://blog.google/technology/google-deepmind/gemini-model-thinking-
updates-march-2025/ (visited on 04/06/2025).

[4] The AllBusiness.com Team. “The definition of large language model (LLM),” TIME. (Apr. 3,
2025), [Online]. Available: https://time.com/collections/the-ai-dictionary-from-
allbusiness- com/7273967/definition- of- large- language- model- llm/ (visited on
04/12/2025).

[5] P. Sweetser, Large language models and video games: A preliminary scoping review, 2024. doi:
10.48550/arXiv.2403.02613. arXiv: 2403.02613.

[6] N. F. Bonn, “The impact of integrating artificial intelligence into the video games industry: A
case study,” M.S. thesis, KTH Royal Institute of Technology, Stockholm, Sweden, Jun. 2023.

[7] N. Jain and M. Bhiyana, “The role of artificial intelligence in enhancing software engineering
practices: A comprehensive analysis of current applications and future directions,” Interna-
tional Journal of Contemporary Research in Multidisciplinary, 2025, Autor:innen als "Dr." im
Original. doi: 10.5281/ZENODO.15700276.

[8] Camellia. “KI in der spieleentwicklung: Ein tiefer einblick in die trends der spieleentwicklung
im jahr 2025.” (Jan. 16, 2025), [Online]. Available: https://www.meshy.ai/de/blog/ai-
game-development (visited on 04/14/2025).

[9] T. Kirwin, AI x game dev 2024 – a16z games survey results, LinkedIn-Post, Dec. 2024. [On-
line]. Available: https://www.linkedin.com/posts/troykirwin_ai-x-game-dev-2024-
a16z-games-activity-7275181860152877058-s9zM/ (visited on 04/15/2025).

[10] R. Gallotta, G. Todd, M. Zammit, et al., “Large language models and games: A survey and
roadmap,” IEEE Transactions on Games, pp. 1–18, 2024. doi: 10.1109/TG.2024.3461510.
arXiv: 2402.18659.

[11] J. Ratican and J. Hutson, “Video game development 3.0: AI-driven collaborative co-creation,”
Metaverse, vol. 5, no. 2, p. 2904, 2024. doi: 10.54517/m2904.

[12] U. K. Durrani, M. Akpinar, M. Fatih Adak, A. Talha Kabakus, M. Maruf Öztürk, and M.
Saleh, “A decade of progress: A systematic literature review on the integration of AI in
software engineering phases and activities (2013-2023),” IEEE Access, vol. 12, pp. 171 185–
171 204, 2024. doi: 10.1109/ACCESS.2024.3488904.

35

https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://time.com/collections/the-ai-dictionary-from-allbusiness-com/7273967/definition-of-large-language-model-llm/
https://time.com/collections/the-ai-dictionary-from-allbusiness-com/7273967/definition-of-large-language-model-llm/
https://doi.org/10.48550/arXiv.2403.02613
https://arxiv.org/abs/2403.02613
https://doi.org/10.5281/ZENODO.15700276
https://www.meshy.ai/de/blog/ai-game-development
https://www.meshy.ai/de/blog/ai-game-development
https://www.linkedin.com/posts/troykirwin_ai-x-game-dev-2024-a16z-games-activity-7275181860152877058-s9zM/
https://www.linkedin.com/posts/troykirwin_ai-x-game-dev-2024-a16z-games-activity-7275181860152877058-s9zM/
https://doi.org/10.1109/TG.2024.3461510
https://arxiv.org/abs/2402.18659
https://doi.org/10.54517/m2904
https://doi.org/10.1109/ACCESS.2024.3488904

[13] C. Treude and R. G. Kula, Interacting with AI reasoning models: Harnessing "thoughts" for
AI-driven software engineering, 2025. doi: 10.48550/arXiv.2503.00483. arXiv: 2503.00483.

[14] R. Ribeiro, A. V. De Carvalho, and N. B. Rodrigues, “Image-based video game asset genera-
tion and evaluation using deep learning: A systematic review of methods and applications,”
IEEE Transactions on Games, pp. 1–10, 2024. doi: 10.1109/TG.2024.3487054.

[15] M. Zammit, A. Liapis, and G. N. Yannakakis, “CrawLLM: Theming games with large language
models,” in 2024 IEEE Conference on Games (CoG), Odense, Denmark: IEEE, 2024, pp. 1–2.
doi: 10.1109/CoG60054.2024.10645576.

[16] J. Spracklen, R. Wijewickrama, A. H. M. N. Sakib, A. Maiti, B. Viswanath, and M. Jadliwala,
“We have a package for you! a comprehensive analysis of package hallucinations by code
generating llms,” arXiv preprint arXiv:2406.10279, 2024. [Online]. Available: https://arxiv.
org/abs/2406.10279.

[17] A. Eghbali and M. Pradel, De-hallucinator: Mitigating LLM hallucinations in code generation
tasks via iterative grounding, 2024. doi: 10.48550/arXiv.2401.01701. arXiv: 2401.01701.

[18] F. Liu, Y. Liu, L. Shi, et al., Exploring and evaluating hallucinations in LLM-powered code
generation, 2024. doi: 10.48550/arXiv.2404.00971. arXiv: 2404.00971.

[19] N. Humble, “Play my thesis: Opportunities and limitations of building serious games with
AI,” International Conference on AI Research, vol. 4, no. 1, pp. 165–174, 2024. doi: 10.
34190/icair.4.1.3130.

[20] L. Ling, F. F. Rabbi, S. Wang, and J. Yang, “Bias unveiled: Investigating social bias in
llm-generated code,” arXiv preprint arXiv:2411.10351, 2024. doi: 10.48550/ARXIV.2411.
10351. [Online]. Available: https://arxiv.org/abs/2411.10351.

[21] M. Gozzi and F. Di Maio, “Comparative analysis of prompt strategies for large language
models: Single-task vs. multitask prompts,” Electronics, vol. 13, no. 23, p. 4712, 2024. doi:
10.3390/electronics13234712.

[22] A. Al-Mashahedi and O. Ljung, “Robust code generation using large language models: Guid-
ing and evaluating large language models for static verification,” Master’s thesis, Blekinge
Tekniska Högskola, Jun. 2024.

[23] J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hemmati, Prompt engineering or
fine-tuning: An empirical assessment of LLMs for code, 2025. doi: 10.48550/arXiv.2310.
10508. arXiv: 2310.10508.

[24] R. Cruz, J. Contreras, F. Guerrero, E. Rodriguez, C. Valdez, and C. Carrillo, Prompt engi-
neering and framework: Implementation to increase code reliability based guideline for LLMs,
2025. doi: 10.48550/arXiv.2506.10989. arXiv: 2506.10989.

[25] Y. Wang, Q. Zhao, D. Xu, and X. Liu, “Purpose enhanced reasoning through iterative prompt-
ing: Uncover latent robustness of ChatGPT on code comprehension,” in Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, International Joint

36

https://doi.org/10.48550/arXiv.2503.00483
https://arxiv.org/abs/2503.00483
https://doi.org/10.1109/TG.2024.3487054
https://doi.org/10.1109/CoG60054.2024.10645576
https://arxiv.org/abs/2406.10279
https://arxiv.org/abs/2406.10279
https://doi.org/10.48550/arXiv.2401.01701
https://arxiv.org/abs/2401.01701
https://doi.org/10.48550/arXiv.2404.00971
https://arxiv.org/abs/2404.00971
https://doi.org/10.34190/icair.4.1.3130
https://doi.org/10.34190/icair.4.1.3130
https://doi.org/10.48550/ARXIV.2411.10351
https://doi.org/10.48550/ARXIV.2411.10351
https://arxiv.org/abs/2411.10351
https://doi.org/10.3390/electronics13234712
https://doi.org/10.48550/arXiv.2310.10508
https://doi.org/10.48550/arXiv.2310.10508
https://arxiv.org/abs/2310.10508
https://doi.org/10.48550/arXiv.2506.10989
https://arxiv.org/abs/2506.10989

Conferences on Artificial Intelligence Organization, 2024, pp. 6513–6521. doi: 10.24963/
ijcai.2024/720.

[26] V.-A. Pădurean, P. Denny, A. Gotovos, and A. Singla, Prompt programming: A platform
for dialogue-based computational problem solving with generative AI models, 2025. doi: 10.
48550/arXiv.2503.04267. arXiv: 2503.04267.

[27] M. Liu, J. Wang, T. Lin, Q. Ma, Z. Fang, and Y. Wu, “An empirical study of the code
generation of safety-critical software using LLMs,” Applied Sciences, vol. 14, no. 3, p. 1046,
2024. doi: 10.3390/app14031046.

[28] J. H. Klemmer, S. A. Horstmann, N. Patnaik, et al., “Using AI assistants in software develop-
ment: A qualitative study on security practices and concerns,” in Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security, 2024, pp. 2726–2740.
doi: 10.1145/3658644.3690283. arXiv: 2405.06371.

[29] C. Tony, N. E. D. Ferreyra, M. Mutas, S. Dhiff, and R. Scandariato, Prompting techniques for
secure code generation: A systematic investigation, 2025. doi: 10.48550/arXiv.2407.07064.
arXiv: 2407.07064.

[30] Z. Zhang, Y. Wang, C. Wang, J. Chen, and Z. Zheng, LLM hallucinations in practical code
generation: Phenomena, mechanism, and mitigation, 2025. doi: 10.48550/arXiv.2409.
20550. arXiv: 2409.20550.

[31] M. Bruni, F. Gabrielli, M. Ghafari, and M. Kropp, Benchmarking prompt engineering tech-
niques for secure code generation with GPT models, 2025. doi: 10.48550/arXiv.2502.06039.
arXiv: 2502.06039.

[32] S. A. Licorish, A. Bajpai, C. Arora, F. Wang, and K. Tantithamthavorn, Comparing human
and LLM generated code: The jury is still out! 2025. doi: 10.48550/arXiv.2501.16857.
arXiv: 2501.16857.

[33] D. Cotroneo, A. Foggia, C. Improta, P. Liguori, and R. Natella, “Automating the correctness
assessment of AI-generated code for security contexts,” Journal of Systems and Software,
vol. 216, p. 112 113, 2024. doi: 10.1016/j.jss.2024.112113. arXiv: 2310.18834.

[34] M. Farrokhi Maleki and R. Zhao, “Procedural content generation in games: A survey with
insights on emerging LLM integration,” Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 20, no. 1, pp. 167–178, 2024. doi:
10.1609/aiide.v20i1.31877.

[35] I.-C. Baek, T.-H. Park, J.-H. Noh, C.-M. Bae, and K.-J. Kim, ChatPCG: Large language
model-driven reward design for procedural content generation, 2024. doi: 10.48550/arXiv.
2406.11875. arXiv: 2406.11875.

[36] S. Bezzina and A. Dingli, “My teammate is an ai: Evaluating generative ai in game asset
creation through a post-gamejam study,” 2025. doi: 10.26503/dl.v2025i2.2438. [Online].
Available: https://dl.digra.org/index.php/dl/article/view/2438.

37

https://doi.org/10.24963/ijcai.2024/720
https://doi.org/10.24963/ijcai.2024/720
https://doi.org/10.48550/arXiv.2503.04267
https://doi.org/10.48550/arXiv.2503.04267
https://arxiv.org/abs/2503.04267
https://doi.org/10.3390/app14031046
https://doi.org/10.1145/3658644.3690283
https://arxiv.org/abs/2405.06371
https://doi.org/10.48550/arXiv.2407.07064
https://arxiv.org/abs/2407.07064
https://doi.org/10.48550/arXiv.2409.20550
https://doi.org/10.48550/arXiv.2409.20550
https://arxiv.org/abs/2409.20550
https://doi.org/10.48550/arXiv.2502.06039
https://arxiv.org/abs/2502.06039
https://doi.org/10.48550/arXiv.2501.16857
https://arxiv.org/abs/2501.16857
https://doi.org/10.1016/j.jss.2024.112113
https://arxiv.org/abs/2310.18834
https://doi.org/10.1609/aiide.v20i1.31877
https://doi.org/10.48550/arXiv.2406.11875
https://doi.org/10.48550/arXiv.2406.11875
https://arxiv.org/abs/2406.11875
https://doi.org/10.26503/dl.v2025i2.2438
https://dl.digra.org/index.php/dl/article/view/2438

[37] S. V. Gunturi, J. J. Blum, and T. S. Love, “An evaluation of prompt engineering strategies
by college students in competitive programming tasks,” 2025.

38

	List of Figures
	Introduction
	Related Work
	Design and Main Idea
	Game Concept and Core Objective
	User Experience and Interface Design
	Core Gameplay Mechanics and Logic
	Programming Language and Framework Selection

	Implementation
	The "Big Prompt" Approach: A Top-Down Experiment
	The Iterative Approach: A Bottom-Up Process

	Evaluation and Discussion
	Quantitative Analysis of the Iterative Process
	Discussion and Method Comparison
	Limitations of the Study

	Conclusion and Future Work
	The "Big Prompt" Used in the Experiment

